江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题含解析_第1页
江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题含解析_第2页
江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题含解析_第3页
江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题含解析_第4页
江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安吉安县联考2025届九年级数学第一学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是()A.4 B.6 C.8 D.102.已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>13.化简的结果是()A. B. C. D.4.若,则下列各式一定成立的是()A. B. C. D.5.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.

B.

C.

D.16.如图,已知A、B是反比例函数上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是()A. B. C. D.7.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30 B.30﹣30 C.30 D.308.如图,抛物线与直线交于,两点,与直线交于点,将抛物线沿着射线方向平移个单位.在整个平移过程中,点经过的路程为()A. B. C. D.9.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A.8 B. C.4 D.10.已知函数的图象过点,则该函数的图象必在()A.第二、三象限 B.第二、四象限C.第一、三象限 D.第三、四象限11.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A. B. C. D.12.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点A在函数y=(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.15.若关于的一元二次方程的一个根是,则的值是_________.16.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.17.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是______.18.如图,抛物线与轴交于点和点.(1)已知点在第一象限的抛物线上,则点的坐标是_______.(2)在(l)的条件下连接,为抛物线上一点且,则点的坐标是_______.三、解答题(共78分)19.(8分)计算:4sin30°﹣cos45°+tan260°.20.(8分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F(I)如图①,连接AD,若,求∠B的大小;(Ⅱ)如图②,若点F为的中点,的半径为2,求AB的长.21.(8分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:销售单价(元)200230250年销售量(万件)14119(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?22.(10分)在平面直角坐标系xOy(如图)中,抛物线y=ax2+bx+2经过点A(4,0)、B(2,2),与y轴的交点为C.(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M,求△AMC的面积;(3)如果这个抛物线的对称轴与直线BC交于点D,点E在线段AB上,且∠DOE=45°,求点E的坐标.23.(10分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.24.(10分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.25.(12分)已知:如图,四边形ABCD是矩形,过点D作DF∥AC交BA的延长线于点F.(1)求证:四边形ACDF是平行四边形;(2)若AB=3,DF=5,求△AEC的面积.26.如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.

参考答案一、选择题(每题4分,共48分)1、D【分析】延长BE交于点M,连接CM,AC,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC和等腰直角三角形BAC,依据等腰直角三角形三边关系,知道要求AB只要求直径BC,直径BC可以在直角三角形BMC中运用勾股定理求,只需要求出BM和CM,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM是矩形,从而得到CM和EM的长度,再用BE+EM即得BM,此题得解.【详解】解:延长BE交于点M,连接CM,AC,∵BC为直径,∴,又∵由得:,∴四边形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵点A是以BC为直径的半圆的中点,∴AB=AC,又∵,∴,∴AB=10.故选:D.【点睛】本题考查了圆周角定理的推理——直径所对的圆周角是90度,矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.2、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则,解得:a<﹣.故选:B.【点睛】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.3、B【解析】根据同底数幂相乘,底数不变,指数相加计算即可.【详解】a2•a4=a2+4=a1.故选:B.4、B【分析】由等式的两边都除以,从而可得到答案.【详解】解:等式的两边都除以:,故选B.【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键.5、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.6、A【详解】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系,故排除C.故选A.考点:动点问题的函数图象.7、B【分析】在Rt△BCD中,解直角三角形,可求得CD的长,即求得甲的高度,过A作AF⊥CD于点F,在Rt△ADF中解直角三角形可求得DF,则可求得CF的长,即可求得乙的高度.【详解】解:如图,过A作AF⊥CD于点F,

在Rt△BCD中,∠DBC=60°,BC=30m,

∵tan∠DBC=,

∴CD=BC•tan60°=30m,

∴甲建筑物的高度为30m;

在Rt△AFD中,∠DAF=45°,

∴DF=AF=BC=30m,

∴AB=CF=CD-DF=(30-30)m,

∴乙建筑物的高度为(30-30)m.

故选B.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.8、B【分析】根据题意抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,可得平移后的顶点坐标.设向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a,令x=2,y=(a-)²+,由0≤a≤4,推出y的最大值和最小值,根据点D的纵坐标的变化情形,即可解决问题.【详解】解:由题意,抛物线沿着射线方向平移个单位,点A向右平移4个单位,向上平移2个单位,∵抛物线=(x+1)²-1的顶点坐标为(-1,-1),设抛物线向右平移a个单位,则向上平移a个单位,抛物线的解析式为y=(x+1-a)²-1+a令x=2,y=(3-a)²-1+a,∴y=(a-)²+,∵0≤a≤4∴y的最大值为8,最小值为,∵a=4时,y=2,∴8-2+2(2-)=故选:B【点睛】本题考查的是抛物线上的点在抛物线平移时经过的路程问题,解决问题的关键是在平移过程中点D的移动规律.9、A【解析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.【详解】轴,,B两点纵坐标相同,设,,则,,,,故选A.【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.10、B【解析】试题分析:对于反比例函数y=,当k>0时,函数图像在一、三象限;当k<0时,函数图像在二、四象限.根据题意可得:k=-2.考点:反比例函数的性质11、A【分析】由几何体的俯视图观察原立体图形中正方体的位置关系【详解】由俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A.故选A.12、C【解析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.二、填空题(每题4分,共24分)13、【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=,∴k=1×=.故答案为:【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14、3【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案为:3.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.15、1【分析】先利用一元二次方程根的定义得到a-b=﹣4,再把2019﹣a+b变形为2019﹣(a-b),然后利用整体代入的方法计算.【详解】把代入一元二次方程,得:,即:,∴,故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16、y=x-,【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4-x,则,解得,x=,∴点B的坐标为,设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=.故答案为:y=.【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.17、x≤﹣6或0<x≤1【解析】当y1≤y1时,x的取值范围就是当y1的图象与y1重合以及y1的图象落在y1图象的下方时对应的x的取值范围.【详解】根据图象可得当y1≤y1时,x的取值范围是:x≤-6或0<x≤1.故答案为x≤-6或0<x≤1.【点睛】本题考查了反比例函数与一次函数图象的交点问题,理解当y1≤y1时,求x的取值范围就是求当y1的图象与y1重合以及y1的图象落在y1图象的下方时对应的x的取值范围,解答此题时,采用了“数形结合”的数学思想.18、(1)(2)【分析】(1)由题意把点坐标代入函数解析式求出m,并由点在第一象限判断点的坐标;(2)利用相似三角形相关性质判定≌,并根据题意设,则,表示P,把代入函数解析式从而得解.【详解】解:(1)把点坐标代入函数解析式得解得∵点在第一象限∴∴∴(2)∵(作为特殊角,处理方法是作其补角)∴过点作延长线于点∵,∴为等腰直角三角形∴(因为,,所以考虑构造一线三垂直,水平竖直作垂线)∴过点作轴于点,于点∴≌∵∴∴设:,则∴∴(注意咱们设,为整数,点在第三象限,横纵坐标为负数,所以点的坐标表示要注意正负!)把代入函数解析式得解得或6(舍去)∴∴.【点睛】本题是二次函数综合题,主要考查坐标轴上点的特点,对称的性质,相似三角形的判定和性质,勾股定理,作出辅助线构造出相似三角形是解本题的关键.三、解答题(共78分)19、4.【分析】原式利用特殊角的三角函数值计算即可求出值.【详解】原式.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、(1)∠B=40°;(2)AB=6.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得AC∥OD

,即可求得∠CAD=∠ADO

,继而求得答案;

(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD

,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.【详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.21、(1);(2)亏损,赔了110万元【分析】(1)设,将,代入求得系数即可.(2)根据年获利=单件利润销量-800-1550【详解】解:(1)设,;(2),对称轴,∵,,∴时,(万元)1550+800-2240=110(万元)∴赔了110万元.【点睛】本题考查了二次函数的实际中的应用,首先要明确题意,确定变量,建立模型解答.22、(1)y=-14x2+12x+2;(1)32【解析】(1)根据点A,B的坐标,利用待定系数法即可求出抛物线的表达式;(1)利用配方法可求出点M的坐标,利用二次函数图象上点的坐标特征可求出点C的坐标,过点M作MH⊥y轴,垂足为点H,利用分割图形求面积法可得出△AMC的面积;(3)连接OB,过点B作BG⊥x轴,垂足为点G,则△BGA,△OCB是等腰直角三角形,进而可得出∠BAO=∠DBO,由∠DOB+∠BOE=45°,∠BOE+∠EOA=45°可得出∠EOA=∠DOB,进而可证出△AOE∽△BOD,利用相似三角形的性质结合抛物线的对称轴为直线x=1可求出AE的长,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,根据等腰直角三角形的性质可得出AF、EF的长,进而可得出点E的坐标.【详解】解:(1)将A(4,0),B(1,1)代入y=ax1+bx+1,得:16a+解得:a=∴抛物线的表达式为y=﹣14x1+12(1)∵y=﹣14x1+12x+1=﹣14(x﹣1)1∴顶点M的坐标为(1,94当x=0时,y=﹣14x1+12∴点C的坐标为(0,1).过点M作MH⊥y轴,垂足为点H,如图1所示.∴S△AMC=S梯形AOHM﹣S△AOC﹣S△CHM,=12(HM+AO)•OH﹣12AO•OC﹣12CH=12×(1+4)×94﹣12×4×1﹣12×(=32(3)连接OB,过点B作BG⊥x轴,垂足为点G,如图1所示.∵点B的坐标为(1,1),点A的坐标为(4,0),∴BG=1,GA=1,∴△BGA是等腰直角三角形,∴∠BAO=45°.同理,可得:∠BOA=45°.∵点C的坐标为(1,0),∴BC=1,OC=1,∴△OCB是等腰直角三角形,∴∠DBO=45°,BO=12,∴∠BAO=∠DBO.∵∠DOE=45°,∴∠DOB+∠BOE=45°.∵∠BOE+∠EOA=45°,∴∠EOA=∠DOB,∴△AOE∽△BOD,∴AEBD∵抛物线y=﹣14x1+12x+1的对称轴是直线∴点D的坐标为(1,1),∴BD=1,∴AE1∴AE=2,过点E作EF⊥x轴,垂足为点F,则△AEF为等腰直角三角形,∴EF=AF=1,∴点E的坐标为(3,1).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、二次函数的性质、三角形(梯形)的面积、相似三角形的判定与性质以及等腰直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(1)利用分割图形求面积法结合三角形、梯形的面积公式,求出△AMC的面积;(3)通过构造相似三角形,利用相似三角形的性质求出AE的长度.23、(1)9,9(2)23,3【详解】(1)x甲==(10+9+8+8+10+9)÷6x乙=(10+10+8+10+7+9)÷6=(2)S(3)∵x甲∴推荐甲参加省比赛更合适【点睛】方差的基本知识是判断乘积等一些频

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论