版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市双牌县2025届九年级数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知⊙O的半径为13,弦AB//CD,AB=24,CD=10,则AB、CD之间的距离为A.17 B.7 C.12 D.7或172.关于x的方程有实数根,则k的取值范围是()A. B.且 C. D.且3.如图,以点A为中心,把△ABC逆时针旋转m°,得到△AB′C′(点B、C的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为()A. B. C. D.4.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是()A. B. C. D.5.已知是方程x2﹣2x+c=0的一个根,则c的值是()A.﹣3 B.3 C. D.26.已知⊙O的半径为6cm,OP=8cm,则点P和⊙O的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.无法判断7.将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. B. C. D.8.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米 B.6米 C.8米 D.(3+)米9.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.10.已知关于的方程有一个根是,则的值是()A.-1 B.0 C. D.111.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.12.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A.12 B.9 C.4 D.3二、填空题(每题4分,共24分)13.已知等腰三角形的两边长是方程x2﹣9x+18=0的两个根,则该等腰三角形的周长为_____.14.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是_____.15.若点A(1,y1)和点B(2,y2)在反比例函数y=﹣的图象上,则y1与y2的大小关系是_____.16.若两个相似三角形的周长比是,则对应中线的比是________.17.在中,若,则是_____三角形.18.如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为_____.三、解答题(共78分)19.(8分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=1.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.20.(8分)在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于1.21.(8分)如图,一个运动员推铅球,铅球在点A处出手,出手时球离地面m.铅球落地点在点B处,铅球运行中在运动员前4m处(即OC=4m)达到最高点,最高点D离地面3m.已知铅球经过的路线是抛物线,根据图示的平面直角坐标系,请你算出该运动员的成绩.22.(10分)如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)23.(10分)已知关于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为,且满足,求实数m的值。24.(10分)如图,把点以原点为中心,分别逆时针旋转,,,得到点,,.(1)画出旋转后的图形,写出点,,的坐标,并顺次连接、,,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?25.(12分)如图,一次函数y=kx+b(b=0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(﹣3,4),点B的坐标为(6,n)(1)求反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)若kx+b<,直接写出x的取值范围.26.某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.
参考答案一、选择题(每题4分,共48分)1、D【解析】①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB与CD之间的距离为7cm或17cm.故选D.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.2、C【分析】关于x的方程可以是一元一次方程,也可以是一元二次方程;当方程为一元一次方程时,k=1;是一元二次方程时,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b2-4ac≥1.【详解】当k=1时,方程为3x-1=1,有实数根,当k≠1时,△=b2-4ac=32-4×k×(-1)=9+4k≥1,解得k≥-.综上可知,当k≥-时,方程有实数根;故选C.【点睛】本题考查了方程有实数根的含义,一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.注意到分两种情况讨论是解题的关键.3、B【分析】根据旋转的性质可得、,利用等腰三角形的性质可求得,再根据平行线的性质得出,最后由角的和差得出结论.【详解】解:∵以点为中心,把逆时针旋转,得到∴,∴∵∴∴故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.4、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;
②在等圆或同圆中,长度相等的两条弧是等弧,假命题;
③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.
故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).5、B【分析】把x=代入方程得到关于c的方程,然后解方程即可.【详解】解:把x=代入方程x2﹣2x+c=0,得()2﹣2×+c=0,所以c=6﹣1=1.故选:B.【点睛】本题考查了一元二次方程根的性质,解答关键是将方程的根代入原方程求出字母系数.6、C【分析】根据点与圆的位置关系即可求解.【详解】∵⊙O的半径为6cm,OP=8cm,∴点P到圆心的距离OP=8cm,大于半径6cm,∴点P在圆外,故选:C.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.7、B【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:.故选:B.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.8、A【解析】试题分析:根据CD:AD=1:2,AC=3米可得:CD=3米,AD=6米,根据AB=10米,∠D=90°可得:BD==8米,则BC=BD-CD=8-3=5米.考点:直角三角形的勾股定理9、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.10、A【分析】把b代入方程得到关于a,b的式子进行求解即可;【详解】把b代入中,得到,∵,∴两边同时除以b可得,∴.故答案选A.【点睛】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键.11、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.12、A【分析】摸到红球的频率稳定在25%,即=25%,即可即解得a的值【详解】解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=1.故本题选A.【点睛】本题考查用频率估计概率,熟记公式正确计算是本题的解题关键二、填空题(每题4分,共24分)13、1.【解析】解方程,分类讨论腰长,即可求解.【详解】解:x2﹣9x+18=0得x=3或6,分类讨论:当腰长为3时,三边为3、3、6此时不构成三角形,故舍,当腰长为6时,三边为3、6、6,此时周长为1.【点睛】本题考查了解一元二次方程和构成三角形的条件,属于简单题,分类讨论是解题关键.14、2﹣【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【详解】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【点睛】本题考查的是圆的综合,难度系数较高,解题关键是根据正八边形的性质得出每个角的度数.15、y1<y1【分析】由k=-1可知,反比例函数y=﹣的图象在每个象限内,y随x的增大而增大,则问题可解.【详解】解:∵反比例函数y=﹣中,k=﹣1<0,∴此函数在每个象限内,y随x的增大而增大,∵点A(1,y1),B(1,y1)在反比例函数y=﹣的图象上,1>1,∴y1<y1,故答案为y1<y1.【点睛】本题考查了反比例函数的增减性,解答关键是注意根据比例系数k的符号确定,在各个象限内函数的增减性解决问题.16、4:9【分析】相似三角形的面积之比等于相似比的平方.【详解】解:两个相似三角形的周长比是,∴两个相似三角形的相似比是,∴两个相似三角形对应中线的比是,故答案为.17、等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出∠A和∠B的角度,即可得出答案.【详解】∵∴,∴∠A=30°,∠B=30°∴△ABC是等腰三角形故答案为等腰.【点睛】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值.18、﹣5<x<1【分析】先根据抛物线的对称性得到A点坐标(1,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c>0的解集.【详解】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(1,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<1.故答案为﹣5<x<1.【点睛】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.三、解答题(共78分)19、(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<时,存在2个矩形EFGH;③当m=时,存在1个矩形EFGH;④当<m≤时,存在2个矩形EFGH;⑤当<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)
(2)∵O到菱形边的距离为,当⊙O与AB相切时AE=,当过点A,C时,⊙O与AB交于A,E两点,此时AE=×2=,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.20、(1);(2).【分析】根据列表法或树状图看出所有可能出现的结果共有多少种,再求出两次取出小球上的数字相同的结果有多少种,根据概率公式求出该事件的概率.【详解】第二次第一次6﹣276(6,6)(6,﹣2)(6,7)﹣2(﹣2,6)(﹣2,﹣2)(﹣2,7)7(7,6)(7,﹣2)(7,7)(1)P(两数相同)=.(2)P(两数和大于1)=.【点睛】本题考查了利用列表法、画树状图法求等可能事件的概率.21、10m.【解析】由题可知该抛物线的顶点为(4,3),则可设顶点式解析式,再代入已知点A(0,)求解出a值,最后再求解B点坐标即可.【详解】解:能.∵,,∴顶点坐标为,设,代入A点坐标(0,),得:,∴,∴,即,令,得,∴,(舍去).故该运动员的成绩为.【点睛】本题主要考察了二次函数在实际中的运用,根据题意选择顶点式解决实际问题.22、图形见详解.【解析】根据题目要求作出三视图即可.【详解】解:(1)主视图和俯视图如下图,(2)左视图如下图【点睛】本题考查了三视图的实际作图,属于简单题,熟悉三视图的作图方法是解题关键.23、(1);(1)1【分析】(1)根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出结论;(1)利用根与系数的关系可得出x1+x1=1m+3,x1•x1=m1+1,结合x11+x11=31+x1x1即可得出关于m的一元二次方程,解之即可得出m的值.【详解】解:(1)∵方程x1-(1m+3)x+m1+1=0有实数根,∴△=[-(1m+3)]1-4(m1+1)=11m+1≥0,解得:.(1)∵方程x1-(1m+3)x+m1+1=0的两个根分别为x1、x1,∴x1+x1=1m+3,x1•x1=m1+1,∵x11+x11=31+x1x1,∴(x1+x1)1-1x1•x1=31+x1x1,即m1+11m-18=0,解得:m1=1,m1=-14(舍去),∴实数m的值为1.【点睛】本题考查了根与系数的关系以及根的判别式,熟练掌握当一元二次方程有实数根时根的判别式△≥0是解题的关键.24、(1)详见解析,,,;(2)50;(3)【分析】(1)根据题意再表格中得出B、C、D,并顺次连接、,,各点即可画出旋转后的图形,写出点,,的坐标即可.(2)可证得四边形ABCD是正方形,根据正方形的面积公式:正方形的面积=对角线×对角线÷2即可得出结果.(3)观察(1)可以得出规律,旋转后的点的坐标和旋转前的点横纵坐标位置相反,且纵坐标变为相反数.【详解】解:(1)如图,,,(2)由旋转性质可得:,∴,∴四边形ABCD为正方形,∴(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四年级数学(四则混合运算)计算题专项练习与答案汇编
- 电冰箱、空调器安装与维护电子教案 3.2 组装制冷系统
- 小学S版二年级语文下册教案设计
- DB11T 1249-2015 居住建筑节能评价技术规范
- 《电气控制系统设计与装调》教案 项目一-任务1:安全操作规程
- 剂量计产业深度调研及未来发展现状趋势
- 提供全球计算机网络用户接入服务行业经营分析报告
- 发光极管LE产业运行及前景预测报告
- 工业用X光装置产业运行及前景预测报告
- 人教版英语八年级上册 Unit10 期末训练-句子
- 道德与法治《家庭的记忆》教学1课件
- TAACPM 007-2020 建设工程第三方质量安全巡查工作标准
- 《钱学森》 完整版课件
- 《企业经营的真谛》读后感
- 2022-2023高中美术人美版第四单元主题二-人作与天开-中国古典园林艺术
- 四川大学华西医院临床试验-开展前自查表(IVD)
- 《危险化学品目录》2015年版
- 苏教版小学数学二年级上册《7的乘法口诀》优质课件
- 九年级道德与法治期中质量检测试卷讲评:总结反思促提升课件
- 农药生产安全管理检查表
- 导管的护理课件
评论
0/150
提交评论