福建省南安市柳城义务教育小片区2022年数学九年级第一学期期末预测试题含解析_第1页
福建省南安市柳城义务教育小片区2022年数学九年级第一学期期末预测试题含解析_第2页
福建省南安市柳城义务教育小片区2022年数学九年级第一学期期末预测试题含解析_第3页
福建省南安市柳城义务教育小片区2022年数学九年级第一学期期末预测试题含解析_第4页
福建省南安市柳城义务教育小片区2022年数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.边长等于6的正六边形的半径等于()A.6 B. C.3 D.2.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为()A. B. C. D.3.如图,将一块含30°的直角三角板绕点A按顺时针方向旋转到△A1B1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.30° B.60° C.90° D.120°4.下列汽车标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形6.若,则代数式的值()A.-1 B.3 C.-1或3 D.1或-37.已知,那么下列等式中,不一定正确的是()A. B. C. D.8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.三角形的内心是()A.三条中线的交点 B.三条高的交点C.三边的垂直平分线的交点 D.三条角平分线的交点10.如图,OA、OB是⊙O的半径,C是⊙O上一点.若∠OAC=16°,∠OBC=54°,则∠AOB的大小是()A.70° B.72° C.74° D.76°二、填空题(每小题3分,共24分)11.已知一元二次方程的一个根为1,则__________.12.已知二次函数的图象与x轴有交点,则k的取值范围是__________13.方程的根是________.14.如图,在平面直角坐标系xOy中,,,如果抛物线与线段AB有公共点,那么a的取值范围是______.15.如图,四边形ABCD、AEFG都是正方形,且∠BAE=45°,连接BE并延长交DG于点H,若AB=4,AE=,则线段BH的长是_____.16.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况.如表:节水量/m30.20.250.30.40.5家庭数/个24671请你估计这400名同学的家庭一个月节约用水的总量大约是_____m3.17.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.18.已知二次函数的图象经过点,的横坐标分别为,点的位置随的变化而变化,若运动的路线与轴分别相交于点,且(为常数),则线段的长度为_________.三、解答题(共66分)19.(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?20.(6分)如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.21.(6分)如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),B(4,2),函数(k≠0)的图象经过点C.(1)求反比例的函数表达式:(2)请判断平行四边形OABC对角线的交点是否在函数(k≠0)的图象上.22.(8分)如图,在中,,,以为顶点在边上方作菱形,使点分别在边上,另两边分别交于点,且点恰好平分.(1)求证:;(2)请说明:.23.(8分)如图,的半径为,是的直径,是上一点,连接、.为劣弧的中点,过点作,垂足为,交于点,,交的延长线于点.(1)求证:是的切线;(2)连接,若,如图2.①求的长;②图中阴影部分的面积等于_________.24.(8分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)25.(10分)解方程(1)x2﹣6x﹣7=0(2)(x﹣1)(x+3)=1226.(10分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+6

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A.【点睛】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形.2、A【详解】解:设AD与圆的切点为G,连接BG,∴BG⊥AD,∵∠A=60°,BG⊥AD,∴∠ABG=30°,在直角△ABG中,BG=AB=×2=,AG=1,∴圆B的半径为,∴S△ABG==,在菱形ABCD中,∵∠A=60°,则∠ABC=120°,∴∠EBF=120°,∴S阴影=2(S△ABG﹣S扇形ABG)+S扇形FBE==.故选A.考点:1.扇形面积的计算;2.菱形的性质;3.切线的性质;4.综合题.3、D【分析】先判断出旋转角最小是∠CAC1,根据直角三角形的性质计算出∠BAC,再由旋转的性质即可得出结论.【详解】∵Rt△ABC绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,∴旋转角最小是∠CAC1,∵∠C=90°,∠B=30°,∴∠BAC=60°,∵△AB1C1由△ABC旋转而成,∴∠B1AC1=∠BAC=60°,∴∠CAC1=180°﹣∠B1AC1=180°﹣60°=120°,故选:D.【点睛】此题考查旋转的性质,熟知图形旋转后所得图形与原图形全等是解题的关键.4、D【解析】根据题意直接利用轴对称图形和中心对称图形的概念求解即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既是中心对称图形也是轴对称图形,故此选项正确;故选:D.【点睛】本题主要考查中心对称与轴对称的概念即有轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.5、C【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A.直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.6、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,∵≥0,∴故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.7、B【分析】根据比例的性质作答.【详解】A、由比例的性质得到3y=5x,故本选项不符合题意.

B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.

C、根据合比性质得到,故本选项不符合题意.

D、根据等比性质得到,故本选项不符合题意.

故选:B.【点睛】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.8、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.9、D【分析】根据三角形的内心的定义解答即可.【详解】解:因为三角形的内心为三个内角平分线的交点,故选:D.【点睛】此题主要考查了三角形内切圆与内心,解题的关键是要熟记内心的定义和性质.10、D【解析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.二、填空题(每小题3分,共24分)11、-4【分析】将x=1代入方程求解即可.【详解】将x=1代入方程得4+a=0,解得a=-4,故答案为:-4.【点睛】此题考查一元二次方程的解,使方程左右两边相等的未知数的值是方程的解,已知方程的解时将解代入方程求参数即可.12、k≤4且k≠1【分析】根据二次函数的定义和图象与x轴有交点则△≥0,可得关于k的不等式组,然后求出不等式组的解集即可.【详解】解:根据题意得k−1≠0且△=22−4×(k−1)×1≥0,解得k≤4且k≠1.故答案为:k≤4且k≠1.【点睛】本题考查了抛物线与x轴的交点问题:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac决定抛物线与x轴的交点个数:△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.13、x1=0,x1=1【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-1)=0,x1=0,x1=1.故答案为:x1=0,x1=1.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.14、【解析】分别把A、B点的坐标代入得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把代入得;把代入得,所以a的取值范围为.故答案为.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.15、【分析】连结GE交AD于点N,连结DE,由于∠BAE=45°,AF与EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根据勾股定理可计算出,则,解着利用计算出HE,所以BH=BE+HE.【详解】解:连结GE交AD于点N,连结DE,如图,∵∠BAE=45°,∴AF与EG互相垂直平分,且AF在AD上,∵,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,;由题意可得:△ABE相当于逆时针旋转90°得到△AGD,∴,∵,∴,∴.故答案是:.【点睛】本题考查了正方形的性质,解题的关键是会运用勾股定理和等腰直角三角形的性质进行几何计算.16、130【解析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.325=130(m3),故答案为130.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数.17、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.18、27【分析】先求得点M和点N的纵坐标,于是得到点M和点N运动的路线与字母b的函数关系式,则点A的坐标为(0,),点B的坐标为(0,),于是可得到的长度.【详解】∵过点M、N,且即,∴,∴,,∵点A在y轴上,即,把代入,得:,∴点A的坐标为(0,),∵点B在y轴上,即,∴,把代入,得:,∴点B的坐标为(0,),∴.故答案为:.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,正确理解题意、求得点A和点B的坐标是解题的关键.三、解答题(共66分)19、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.20、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.试题解析:(1)由于抛物线(a≠0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入(a≠0),可得:;解方程组可得:,故抛物线的解析式为:,∵=,所以D的坐标为(,).(2)如图1,设P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B两点关于对称轴对称,连接CB交对称轴于点P,则△ACP的周长最小.设直线BC为y=kx+b,则:,解得:,∴直线BC为:.当x=时,=,∴P(,);(3)存在.如图2,过点作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,设点N(m,),∴FN=|m﹣|,FD=||=||,∵Rt△DNM与Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①当∠MDN=∠OBC时,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②当∠MDN=∠OCB时,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合条件的点N的坐标(,)或(,)或(,)或(,).考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题.21、(1)y=;(2)平行四边形OABC对角线的交点在函数y=的图象上,见解析【分析】(1)根据平行四边形性质结合点的坐标特征先求得点C的坐标,继而求得答案;(2)根据平行四边形性质求得对角线交点的坐标,再判断.【详解】(1)∵四边形OABC是平行四边形,A(3,0),∴CB=OA=3,又CB∥x轴,B(4,2),∴C(1,2),∵点C(1,2)在反比例函数(k≠0)的图象上,∴k=xy=2,∴反比例的函数表达式y=;(2)∵四边形OABC是平行四边形,∴对角线的交点即为线段OB的中点,∵O(0,0),B(4,2),∴对角线的交点为(2,1),∵21=2=k,∴平行四边形OABC对角线的交点在函数y=的图象上.【点睛】本题考查待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)证明见解析;(2)证明见解析.【分析】(1)根据四边形是菱形,得到,又推出,又点恰好平分,三线合一,(2)可证,再证,从而求得【详解】证明:(1)连接,∵,,∴.∵四边形是菱形,∴,,∴是等边三角形.∵是的中点,∴(2)∵,∴.∴.∵,∴.∴.∴.∴.∴.∴.∴.【点睛】本题考查了菱形的性质、三线合一以及相似三角形的性质.23、(1)见解析;(2)①,②.【分析】(1)连接OC,利用等腰三角形三线合一的性质证得OC⊥BF,再根据CG∥FB即可证得结论;(2)①根据已知条件易证得是等边三角形,利用三角函数可求得的长,根据三角形重心的性质即可求得答案;②易证得,利用扇形的面积公式即可求得答案.【详解】(1)连接.是的中点,.又,.,.是的切线.(2)①,∴.,.∴是等边三角形.,,又的半径为,在中,,∵BF⊥OC,CD⊥OB,BF与CD相交于E,点E是等边三角形OBC的垂心,也是重心和内心,∴.②∵AF∥BC,∴∴.【点睛】要题考查了等腰三角形的性质,等边三角形的判定和性质,三角函数的知识,扇形的面积公式,根据三角形重心的性质求得的长是解题的关键.24、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论