版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,在△中,,两点分别在边,上,∥.若,则为()A. B. C. D.2.用公式法解一元二次方程时,化方程为一般式当中的依次为()A. B. C. D.3.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.14.如图,△ABC中,∠ACB=90°,∠A=30°,将△ABC绕C点按逆时针方向旋转角(0°<<90°)得到△DEC,设CD交AB于点F,连接AD,当旋转角度数为________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°5.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形6.抛物线向右平移4个单位长度后与抛物线重合,若(-1,3)在抛物线上,则下列点中,一定在抛物线上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)7.如图,.分别与相切于.两点,点为上一点,连接.,若,则的度数为().A.; B.; C.; D..8.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.9.一个几何体由若干个相同的正方体组成,其主视图和左视图如图所示,则组成这个几何体的正方体个数最小值为()A.5 B.6 C.7 D.810.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:7二、填空题(每小题3分,共24分)11.如图所示,个边长为1的等边三角形,其中点,,,,…在同一条直线上,若记的面积为,的面积为,的面积为,…,的面积为,则______.12.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.13.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.14.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论:①abc>0;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正确结论的序号为_____.15.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.16.小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为______m.17.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.18.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)三、解答题(共66分)19.(10分)某次数学竞赛共有3道判断题,认为正确的写“”,错误的写“”,小明在做判断题时,每道题都在“”或“”中随机写了一个.(1)小明做对第1题的概率是;(2)求小明这3道题全做对的概率.20.(6分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.21.(6分)如图,在平面直角坐标系中,直线y=﹣5x+5与x轴、y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴交于另一点B.(1)求抛物线解析式及B点坐标;(2)x2+bx+c≤﹣5x+5的解集是;(3)若点M为抛物线上一动点,连接MA、MB,当点M运动到某一位置时,△ABM面积为△ABC的面积的倍,求此时点M的坐标.22.(8分)已知抛物线.(1)当,时,求抛物线与轴的交点个数;(2)当时,判断抛物线的顶点能否落在第四象限,并说明理由;(3)当时,过点的抛物线中,将其中两条抛物线的顶点分别记为,,若点,的横坐标分别是,,且点在第三象限.以线段为直径作圆,设该圆的面积为,求的取值范围.23.(8分)如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求k.(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.24.(8分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.25.(10分)如图,已知中,,.求的面积.26.(10分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先证明相似,然后再根据相似的性质求解即可.【详解】∵∥∴∵∴=故答案为:C.【点睛】本题考查了三角形相似的性质,即相似三角形的面积之比为相似比的平方.2、B【分析】先整理成一般式,然后根据定义找出即可.【详解】方程化为一般形式为:,.故选:.【点睛】题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).其中a是二次项系数,b是一次项系数,c是常数项.3、B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.4、D【分析】根据旋转的性质可得AC=CD,根据等腰三角形的两底角相等求出∠ADF=∠DAC,再表示出∠DAF,根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三种情况讨论求解.【详解】∵△ABC绕C点逆时针方向旋转得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根据三角形的外角性质,∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三种情况讨论,①∠ADF=∠DAF时,(180°-α)=(180°-α)-30°,无解,②∠ADF=∠AFD时,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD时,(180°-α)-30°=30°+α,解得α=20°,综上所述,旋转角α度数为20°或40°.故选:D.【点睛】本题考查了旋转的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,难点在于要分情况讨论.5、D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.6、A【分析】利用点的平移进行解答即可.【详解】解:∵抛物线向右平移4个单位长度后与抛物线重合∴将(-1,3)向右平移4个单位长度的点在抛物线上∴(3,3)在抛物线上故选:A【点睛】本题考查了点的平移与函数平移规律,掌握点的规律是解题的关键.7、D【解析】连接.,由切线的性质可知,由四边形内角和可求出的度数,根据圆周角定理(一条弧所对的圆周角等于它所对的圆心角的一半)可知的度数.【详解】解:连接.,∵.分别与相切于.两点,∴,,∴,∴,∴.故选:D.【点睛】本题主要考查了圆的切线性质及圆周角定理,灵活应用切线性质及圆周角定理是解题的关键.8、C【解析】试题解析:从左边看一个正方形被分成三部分,两条分式是虚线,故C正确;故选C.考点:简单几何体的三视图.9、A【分析】根据题意分别找到2层组合几何体的最少个数,相加即可.【详解】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.【点睛】本题考查三视图相关,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数进行分析即可.10、C【分析】由于DE∥FG∥BC,那么△ADE△AFGABC,根据AD:AF:AB=1:2:4,可得出三个相似三角形的面积比,进而得出△ADE、四边形DFGE、四边形FBCG的面积比.【详解】设△ADE的面积为a,则△AFG和△ABC的面积分别是4a、16a;则分别是3a、12a;则S△ADE:S四边形DFGE:S四边形FBCG=1:3:12故选C.【点睛】本题主要考察相似三角形,解题突破口是根据平行性质推出△ADE△AFGABC.二、填空题(每小题3分,共24分)11、【分析】由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上,可作出直线BB1.易求得△ABC1的面积,然后由相似三角形的性质,易求得S1的值,同理求得S2的值,继而求得Sn的值.【详解】如图连接BB1,B1B2,B2B3;由n+1个边长为1的等边三角形有一条边在同一直线上,则B,B1,B2,B3,…Bn在一条直线上.∴S△ABC1=×1×=∵B
B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1为等边三角形则C1D1=BD1=;,△C1B1D1中C1D1边上的高也为;∴S1=××=;同理可得;则=,∴S2=××=;同理可得:;∴=,Sn=××=.【点睛】此题考查了相似三角形的判定与性质以及等边三角形的性质.此题难度较大,属于规律性题目,注意辅助线的作法,注意数形结合思想的应用.12、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.13、10【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10.【点睛】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.14、②③.【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】由图象可知,抛物线开口向下,a<0,对称轴在y轴右侧,a、b异号,b>0,与y轴交于正半轴,c>0,所以abc<0,因此①是错误的;当y=0时,抛物线与x轴交点的横坐标就是ax2+bx+c=0的两根,由图象可得x1=﹣1,x2=3;因此②正确;对称轴为x=1,即﹣=1,也就是2a+b=0;因此③正确,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是错误的,故答案为:②③.【点睛】此题考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.15、150个【分析】根据图形的变化寻找规律即可求解.【详解】观察图形的变化可知:当n为偶数时,第n个图形中黑色正方形的数量为(n+)个;当n为奇数时,第n个图形中黑色正方形的数量为(n+)个.所以第100个图形中黑色正方形的数量是150个.故答案为150个.【点睛】本题难度系数较大,需要根据观察得出奇偶数是不同情况,找出规律.16、1.6【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】解:根据题意知,小红的身高为150-30=120(厘米),设小红的影长为x厘米则,解得:x=160,∴小红的影长为1.6米,故答案为1.6【点睛】此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.17、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.18、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.三、解答题(共66分)19、(1);(2)【分析】(1)根据概率公式求概率即可;(2)写出小明做这3道题,所有可能出现的等可能的结果,然后根据概率公式求概率即可.【详解】解:(1)∵第一题可以写A或B,共2种结果,其中作对的可能只有1种,∴小明做对第1题的概率是1÷2=故答案为;(2)小明做这3道题,所有可能出现的结果有:,,,,,,,,共有8种,它们出现的可能性相同,所有的结果中,满足“这3道题全做对”(记为事件)的结果只有1种,∴小明这3道题全做对的概率为1÷8=.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.20、(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.21、(2)(2,0);(2)0≤x≤2;(3)(3,﹣4)或(3+2,4)或(3﹣2,4)【分析】(2)根据已知条件将A点、C点代入抛物线即可求解;(2)观察直线在抛物线上方的部分,根据抛物线与直线的交点坐标即可求解;(3)先设动点M的坐标,再根据两个三角形的面积关系即可求解.【详解】(2)因为直线y=﹣2x+2与x轴、y轴分别交于A,C两点,所以当x=0时,y=2,所以C(0,2)当y=0时,x=2,所以A(2,0)因为抛物线y=x2+bx+c经过A,C两点,所以c=2,2+b+2=0,解得b=﹣6,所以抛物线解析式为y=x2﹣6x+2.当y=0时,0=x2﹣6x+2.解得x2=2,x2=2.所以B点坐标为(2,0).答:抛物线解析式为y=x2﹣6x+2,B点坐标为(2,0);(2)观察图象可知:x2+bx+c≤﹣2x+2的解集是0≤x≤2.故答案为0≤x≤2.(3)设M(m,m2﹣6m+2)因为S△ABM=S△ABC=×4×2=3.所以×4•|m2﹣6m+2|=3所以|m2﹣6m+2|=±4.所以m2﹣6m+9=0或m2﹣6m+2=0解得m2=m2=3或m=3±2.所以M点的坐标为(3,﹣4)或(3+2,4)或(3﹣2,4).答:此时点M的坐标为(3,﹣4)或(3+2,4)或(3﹣2,4).【点睛】本题考查了待定系数法求二次函数解析式,二次函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.22、(1)抛物线与轴有两个交点;(2)抛物线的顶点不会落在第四象限,理由详见解析;(3).【分析】(1)将,代入解析式,然后求当y=0时,一元二次方程根的情况,从而求解;(2)首先利用配方法求出顶点坐标,解法一:假设顶点在第四象限,根据第四象限点的坐标特点列不等式组求解;解法二:设,,则,分析一次函数图像所经过的象限,从而求解;(3)将点代入抛物线,求得a的值,然后求得抛物线解析式及顶点坐标,分别表示出A,B两点坐标,并根据点A位于第三象限求得t的取值范围,利用勾股定理求得的函数解析式,从而求解.【详解】解:(1)依题意,将,代入解析式得抛物线的解析式为.令,得,,∴抛物线与轴有两个交点.(2)抛物线的顶点不会落在第四象限.依题意,得抛物线的解析式为,∴顶点坐标为.解法一:不妨假设顶点坐标在第四象限,则,解得.∴该不等式组无解,∴假设不成立,即此时抛物线的顶点不会落在第四象限.解法二:设,,则,∴该抛物线的顶点在直线上运动,而该直线不经过第四象限,∴抛物线的顶点不会落在第四象限.(3)将点代入抛物线:,得,化简,得.∵,∴,即,∴此时,抛物线的解析式为,∴顶点坐标为.当时,,∴.当时,,∴.∵点在第三象限,∴∴.又,,∴点在点的右上方,∴.∵,∴当时,随的增大而增大,∴.又.∵,∴随的增大而增大,∴.【点睛】本题属于二次函数综合题,综合性较强,掌握二次函数的图像性质利用属性结合思想解题是本题的解题关键.23、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把点A坐标代入一次函数关系式可求出a的值,确定点A的坐标,再代入反比例函数关系式可求出k的值,(2)一次函数与反比例函数联立,可求出交点B的坐标,再根据图象可得出当y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,就是x2+4x﹣k=1有实数根,根据根的判别式求出k的取值范围.【详解】(1)一次函数y1=x+4的图象过A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函数y2=得,k=﹣3;(2)由(1)得反比例函数,由题意得,,解得,,,∴点B(﹣3,1)当y1>y2,即一次函数的图象位于反比例函数图象上方时,自变量的取值范围为:﹣3<x<﹣1;(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,即,方程=x+4有实数根,也就是x2+4x﹣k=1有实数根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范围为:k≥﹣4且k≠1.【点睛】此题考查待定系数法求函数解析式,函数图象与二元一次方程组的关系,一次函数与反比例函数交点的确定,正确理解题意是解题的关键.24、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根据正方形的性质得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根据弧长的计算公式和扇形的面积公式即可得到结论;(Ⅱ)连接BC′,根据题意得到B在对角线AC′上,根据勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到结论;(Ⅲ)如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FO=AB′=1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论.【详解】解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:如图2,连接BC′,∵旋转角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 密闭容器中光合作用
- 人教部编版四年级语文上册第18课《牛和鹅》精美课件
- 福建省福安一中2024年高考高三数学试题3月模拟考试题
- 2024年太原客运从业资格证实操考试内容
- 2024年云南客运资格证场景模拟
- 2024年榆林客运资格证仿真考试题
- 人教版五年级数学上册《应用题天天练》第六单元多边形的面积3梯形的面积(有答案)2
- 2024年(3篇文)个人述职述廉报告
- 吉首大学《教师职业道德与专业发展》2021-2022学年第一学期期末试卷
- 吉首大学《城乡园林绿地规划设计》2021-2022学年第一学期期末试卷
- 上海市普陀区2024-2025学年六年级(五四学制)上学期期中语文试题
- 封条模板A4直接打印版
- 中国水利水电第三工程局有限公司国内工程分包管理办法
- 煤炭实验室建设要求
- 倪志钦:年轻有遗憾没伤感
- 干辣椒收购合同协议书范本通用版
- 印度英文介绍 india(课堂PPT)
- 水稻栽培技术指导方案
- 旅游线路设计实务 理论知识篇
- 工程地质学—地貌
- 应聘登记表(CMHR
评论
0/150
提交评论