版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.2.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35° B.55° C.60° D.70°3.若关于的一元二次方程有一个根为0,则的值()A.0 B.1或2 C.1 D.24.设抛物线的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1()A. B.C. D.(a为任意常数)5.下列运算中,正确的是().A.2xx2 B.x2yyx2 C.xx42x D.2x36x36.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为().A.112° B.68° C.65° D.52°7.下列图形中的角是圆周角的是()A. B.C. D.8.如图,AD是的高,AE是外接圆的直径,圆心为点O,且AC=5,DC=3,,则AE等于()A. B. C. D.59.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.1810.方程的解的个数为()A.0 B.1 C.2 D.1或2二、填空题(每小题3分,共24分)11.(2016广东省茂名市)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是__________.12.在中,,,则______________.13.已知△ABC与△DEF相似,且△ABC与△DEF的相似比为2:3,若△DEF的面积为36,则△ABC的面积等于________.14.已知为锐角,且,那么等于_____________.15.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.16.计算:2sin30°+tan45°=_____.17.如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为_____.18.在中,,,,将沿轴依次以点、、为旋转中心顺时针旋转,分别得到图?、图②、…,则旋转得到的图2018的直角顶点的坐标为________.三、解答题(共66分)19.(10分)为推进“传统文化进校园”活动,我市某中学举行了“走进经典”征文比赛,赛后整理参赛学生的成绩,将学生的成绩分为四个等级,并将结果绘制成不完整的条形统计图和扇形统计图.请根据统计图解答下列问题:(1)参加征文比赛的学生共有人;(2)补全条形统计图;(3)在扇形统计图中,表示等级的扇形的圆心角为__图中;(4)学校决定从本次比赛获得等级的学生中选出两名去参加市征文比赛,已知等级中有男生一名,女生两名,请用列表或画树状图的方法求出所选两名学生恰好是一名男生和一名女生的概率.20.(6分)若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…-2-1012…y…0-2-204…(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.21.(6分)已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.22.(8分)我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如=3+.这种方法我们称为“分离常数法”.(1)如果=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=的图象是由哪个反比例函数的图象经过怎样的变换得到?23.(8分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.(1)求证:∠BAC=∠AED;(2)在边AC取一点F,如果∠AFE=∠D,求证:.24.(8分)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.25.(10分)如图,反比例函数y=(k≠0,x>0)的图象与矩形OABC的边AB、BC分别交于点E、F,E(,6),且E为BC的中点,D为x轴负半轴上的点.(1)求反比倒函数的表达式和点F的坐标;(2)若D(﹣,0),连接DE、DF、EF,则△DEF的面积是.26.(10分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即4-4××(-1)>0,则m的取值范围为且.【详解】∵关于x的一元二次方程有两个不相等的实数根,且是一元二次方程.
∴△>0,即4-4××(-1)>0,.
∴且.故选择C.【点睛】本题考查根的判别式和一元二次方程的定义,解题的关键是掌握根的判别式和一元二次方程的定义.2、B【分析】直接根据圆周角定理进行解答即可.【详解】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、D【分析】把x=1代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠1.【详解】解:根据题意,将x=1代入方程,得:m2-3m+2=1,
解得:m=1或m=2,
又m-1≠1,即m≠1,
∴m=2,
故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠1这一条件.4、D【分析】求出各选项中M、N两点的坐标,再求面积S,进行判断即可;【详解】A选项中,M点坐标为(1,1),N点坐标为(0,-2),,故A选项不满足;B选项中,M点坐标为,N点坐标为(0,),,故B选项不满足;C选项中,M点坐标为(2,),点N坐标为(0,1),,故选项C不满足;D选项中,M点坐标为(,),点N坐标为(0,2),,当a=1时,S=1,故选项D满足;【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.5、B【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】A.2xxx,故本选项错误,B.x2yyx2,故本选项正确,C.,故本选项错误,D.,故本选项错误.故选B.【点睛】此题考查幂的乘方与积的乘方、合并同类项、同底数幂的除法,解题关键在于掌握运算法则.6、C【分析】由四边形ABCD内接于⊙O,可得∠BAD+∠BCD=180°,又由邻补角的定义,可证得∠BAD=∠DCE.继而求得答案.【详解】解:∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故选:C.【点睛】此题考查了圆的内接四边形的性质.注意掌握圆内接四边形的对角互补是解此题的关键.7、C【解析】根据圆周角的定义来判断即可.圆周角必须符合两个条件:顶点在圆上,两边与圆相交,二者缺一都不是.【详解】解:圆周角的定义是:顶点在圆上,并且角的两边和圆相交的角叫圆周角.A、图中的角的顶点不在圆上,不是圆周角;B、图中的角的顶点也不在圆上,不是圆周角;C、图中的角的顶点在圆上,两边与圆相交,是圆周角;D.图中的角的顶点在圆上,而两边与圆不相交,不是圆周角;故选:【点睛】本题考查了圆周角的定义.圆周角必须符合两个条件.8、C【分析】由AD是的高可得和为直角三角形,由勾股定理求得AD的长,解三角形得AB的长,连接BE.由同弧所对的圆周角相等可知∠BEA=∠ACB,解直角三角形ABE即可求出AE.【详解】解:如图,连接BE,∵AD是的高,∴和为直角三角形,∵AC=5,DC=3,,∴AD=4,,∵,∴∠BEA=∠ACB,∵AE是的直径,∴,即是直角三角形,sin∠BEA=sin∠ACB=,∴,故选:C.【点睛】本题考查了直径所对的圆周角是直角、同弧所对的圆周角相等、解直角三角形和勾股定理,熟练掌握定理是解题的关键.9、A【解析】∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故选A.10、C【解析】根据一元二次方程根的判别式,求出△的值再进行判断即可.【详解】解:∵x2=0,
∴△=02-4×1×0=0,∴方程x2=0有两个相等的实数根.故选C【点睛】本题考查的是一元二次方程根的判别式,当△>0时方程有两个不相等的实数根,△=0时方程有两个相等的实数根,△<0时方程没有实数根.二、填空题(每小题3分,共24分)11、.【解析】试题分析:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).考点:(1)坐标与图形变化-旋转;(2)一次函数图象与几何变换12、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.13、16【分析】利用相似三角形面积比等于相似比的平方求解即可.【详解】解:∵ABC与DEF相似,且ΔABC与ΔDEF的相似比为2:3,∴,∵ΔDEF的面积为36,∴∴ΔABC的面积等于16,故答案为16.【点睛】本题考查了相似三角形的性质,熟记相似三角形的面积比等于相似比的平方是解决本题的关键.14、【分析】根据特殊角的三角函数值即可求出答案.【详解】故答案为:.【点睛】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.15、(1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【详解】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为(1,﹣2).【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.16、1.【分析】根据解特殊角的三角函数值即可解答.【详解】原式=1×+1=1.【点睛】本题考查特殊角的三角函数值,解题的关键是牢记这些特殊三角函数值.17、【分析】连接DF,OD,根据圆周角定理得到∠CDF=90°,根据三角形的内角和得到∠COD=120°,根据三角函数的定义得到CF==4,根据弧长公式即可得到结论.【详解】解:如图,连接DF,OD,∵CF是⊙O的直径,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于点D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半径=2,∴劣弧的长==π,故答案为π.【点睛】本题考查了圆周角定理,解直角三角形,弧长的计算,作出辅助线构建直角三角形是本题的关键.18、(8072,0)【分析】利用勾股定理得到AB的长度,结合图形可求出图③的直角顶点的坐标;根据图形不难发现,每3个图形为一个循环组依次循环,且下一组的第一个图形与上一组的最后一个图形的直角顶点重合.【详解】∵∠AOB=90°,OA=3,OB=4,∴AB===5,∴旋转得到图③的直角顶点的坐标为(12,0);根据图形,每3个图形为一个循环组,3+5+4=12,因为2018÷3=672…2所以图2018的直角顶点在x轴上,横坐标为672×12+3+5=8072,所以图2018的顶点坐标为(8072,0),故答案是:(8072,0).【点睛】本题考查了旋转的性质与规律的知识点,解题的关键是根据点的坐标找出规律.三、解答题(共66分)19、(1)30;(2)图见解析;(3)144°,30;(4).【分析】(1)根据等级为A的人数除以所占的百分比即可求出总人数;(2)根据条形统计图得出A、C、D等级的人数,用总人数减A、C、D等级的人数即可;(3)计算C等级的人数所占总人数的百分比,即可求出表示等级的扇形的圆心角和的值;(4)利用列表法或树状图法得出所有等可能的情况数,找出一名男生和一名女生的情况数,即可求出所求的概率.【详解】解:(1)根据题意得成绩为A等级的学生有3人,所占的百分比为10%,则3÷10%=30,即参加征文比赛的学生共有30人;(2)由条形统计图可知A、C、D等级的人数分别为3人、12人、6人,则30−3−12−6=9(人),即B等级的人数为9人补全条形统计图如下图(3),,∴m=30(4)依题意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以;或树状图如下由上图可知总共有6种结果,每种结果出现的可能性相同,其中所选两名学生恰好是一男一女的结果共有4种,所以.【点睛】本题考查了条形统计图、扇形统计图以及利用列表法或者树状图法求概率,弄清题意是解题的关键.20、(1);(2)x≤﹣3或x≥2.【分析】(1)根据表格的数据可得抛物线的对称轴是直线x=,设出抛物线的顶点式,再代入两组数据进行求解即可;(2)由(1)可得抛物线图象开口向上,求得当y=4时x的值,根据抛物线的图象性质即可得到x的取值范围.【详解】解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称,即抛物线的对称轴是直线x=,设二次函数的表达式是,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=,则该二次函数的表达式为(2)∵1>0,∴抛物线的图象开口向上,当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,则当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.【点睛】本题主要考查二次函数图象的性质,解此题的关键在于根据题意利用待定系数法确定函数关系式,再根据抛物线的图象性质进行解答.21、(1)交点坐标为(2,0)和(1,0);(2)2<x<1【分析】(1)把点(﹣2,﹣40)和点(6,1)代入二次函数解析式得到关于a和b的方程组,解方程组求得a和b的值,可确定出二次函数解析式,令y=0,解方程即可;(2)当y>0时,即二次函数图象在x轴上方的部分对应的x的取值范围,据此即可得结论.【详解】(1)由题意,把点(﹣2,﹣40)和点(6,1)代入二次函数解析式,得,解得:,所以这个二次函数的解析式为:,当y=0时,,解之得:,∴这个二次函数图象与x轴的交点坐标为(2,0)和(1,0);(2)当y>0时,直接写出自变量x的取值范围是2<x<1.【点睛】本题考查待定系数法求解析式、二次函数图象与x轴的交点,解题的关键是熟练掌握待定系数法求解析式.22、(1)a=-4;(2)m=4或m=-2或m=2或m=0;(3)y=.【解析】(1)依据定义进行判断即可;(2)首先将原式变形为-3-,然后依据m-1能够被3整数列方程求解即可;(3)先将函数y=化为y=+3,再结合平移的性质即可得出结论.【详解】(1)∵=1+,∴a=-4.(2)=-3-,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y==3+,∴将y=的图象向右移动2个单位长度得到y=的图象,再向上移动3个单位长度得到y-3=,即y=.【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质和找出图象平移的性质是解题的关键.23、见解析【解析】(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)李明应该把铁丝剪成12cm和28cm的两段;(2)李明的说法正确,理由见解析.【解析】试题分析:(1)设剪成的较短的这段为xcm,较长的这段就为(40﹣x)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm2建立方程求出其解即可;(2)设剪成的较短的这段为mcm,较长的这段就为(40﹣m)cm.就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm,两个正方形面积之和为cm2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm和28cm的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.25、(1)y=,F(3,3);(2)S△DEF=1.【分析】(1)利用待定系数法即可求得反比例函数的解析式,根据题意求得B的坐标,进而得到F的横坐标,代入解析式即可求得纵坐标;(2)设DE交y轴于H,先证得H是OC的中点,然后根据S△DEF=S矩形OABC+S△ODH﹣S△ADF﹣S△CEH﹣S△BEF即可求得.【详解】(1)∵反比例函数y=(k≠0,x>0)的图象过E(,6),∴k=×6=1,∴反比例函数的解析式为y=,∵E为BC的中点,∴B(3,6),∴F的横坐标为3,把x=3代入y=得,y==3,∴F(3,3);(2)设DE交y轴于H,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生院院ct诊断合作协议书(2篇)
- 产品采购合同范本
- 离职协议保证
- 二零二四年度精密仪器设备维修与保养合同
- 软装货品选购合同格式
- 房屋买卖合同的权益保护
- 建筑工程钢结构部分施工质量验收资料
- 好运石材料采购协议
- 纸张购销合同范例
- 铜墙铁壁防盗门购销合同
- 水利工程监理质量保证体系
- 路灯工程竣工验收标准表格.docx
- 健身房岗位职责及工作流程(全)
- 青霉素及其发酵生产工艺课件(共50页).ppt
- 精品资料(2021-2022年收藏)中国邮政工资200810范文
- 资本运营理论与融资重点整理
- 学生学习习惯家长问卷调查表家长问卷调查表
- 职业暴露及预防控制
- 转换开关方案PPT课件
- 氩气安全技术说明书
- 常用钢制管件(弯头、三通、异径管、管帽)理论重量体积表
评论
0/150
提交评论