




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.的相反数是()A. B. C.2019 D.-20192.如图,△ABC中,D是AB的中点,DE∥BC,连结BE,若S△DEB=1,则S△BCE的值为()A.1 B.2 C.3 D.43.如图,是正内一点,若将绕点旋转到,则的度数为()A. B.C. D.4.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④ B.①④ C.②③④ D.①②③5.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)6.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为()A.15° B.20° C.30° D.45°7.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为()A. B. C. D.8.若x1,x2是一元二次方程5x2+x﹣5=0的两根,则x1+x2的值是()A. B. C.1 D.﹣19.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°10.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能确定11.下列方程中是关于x的一元二次方程的是()A. B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=012.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9π B.18π C.24π D.36π二、填空题(每题4分,共24分)13.随即掷一枚均匀的硬币三次次,三次正面朝上的概率是______________.14.如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b),使△PAB为等边三角形,则2(a-b)=___________.15.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且﹣1<x1<0,对称轴x=1.如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中所有结论正确的是______(填写番号).16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.18.一元二次方程x2﹣x=0的根是_____.三、解答题(共78分)19.(8分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD的中点,连接OE.过点C作CF//BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.(8分)如图,在中,,,.将绕点逆时针方向旋转60°得到,连接,求线段的长.21.(8分)已知:为的直径,,为上一动点(不与、重合).(1)如图1,若平分,连接交于点.①求证:;②若,求的长;(2)如图2,若绕点顺时针旋转得,连接.求证:为的切线.22.(10分)如图①,在平行四边形ABCD中,对角线AC、BD交于点O,AB=AC,AB⊥AC,过点A作AE⊥BD于点E.(1)若BC=6,求AE的长度;(2)如图②,点F是BD上一点,连接AF,过点A作AG⊥AF,且AG=AF,连接GC交AE于点H,证明:GH=CH.23.(10分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.24.(10分)教材习题第3题变式如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于点E,交AC于点F.求证:四边形AEDF是菱形.25.(12分)如图,四边形ABCD中,对角线AC、BD相交于点O,且AD//BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F(1)求证:四边形ABCD为平行四边形;(2)求证:四边形BFDE为菱形.26.二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为;①求其图象的焦点的坐标;②求过点且与轴平行的直线与二次函数图象交点的坐标.
参考答案一、选择题(每题4分,共48分)1、A【解析】直接利用相反数的定义分析得出答案.【详解】解:的相反数是:.故选A.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故选:B.【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.3、B【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【详解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选:B.【点睛】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.4、D【详解】∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴=,∵AD=BC,∴AF=AD,∴;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵=,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.5、C【分析】如图连接BF交y轴于P,由BC∥GF可得=,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.6、C【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,
∴∠BAB′=∠CAC′=120°,AB=AB′,
∴∠AB′B=(180°-120°)=30°,
∵AC′∥BB′,
∴∠C′AB′=∠AB′B=30°,
∴∠CAB=∠C′AB′=30°,
故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.7、D【分析】如图,作EH⊥AB于H,利用∠CBD的余弦可求出BD的长,利用∠ABD的余弦可求出AB的长,利用∠EBH的正弦和余弦可求出BH、HE的长,即可求出AH的长,利用勾股定理求出AE的长即可.【详解】如图,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵点E为BC中点,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故选:D.【点睛】本题考查解直角三角形的应用,正确作出辅助线构建直角三角形并熟记三角函数的定义是解题关键.8、B【分析】利用计算即可求解.【详解】根据题意得x1+x2=﹣.故选:B.【点睛】本题考查一元二次方程根与系数的关系,解题的关键是熟知一元二次方程两根之和与两根之积与系数之间的关系.9、A【分析】根据特殊角的三角函数值即可求解.【详解】解:∵,∴锐角A的度数是60°,故选:A.【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.10、C【解析】试题解析:∵一个三角形的两个内角分别是∴第三个内角为又∵另一个三角形的两个内角分别是∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.11、C【分析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义即可求解.【详解】解:A选项含有分式,故不是;B选项中没有说明a≠0,则不是;C选项是一元二次方程;D选项中含有两个未知数,故不是;故选:C.【点睛】本题主要考查的是一元二次方程的定义,属于基础题型.解决这个问题的关键就是要明确一元二次方程的定义.12、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】解:圆锥的侧面积=×2π×3×6=18π.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题(每题4分,共24分)13、【分析】需要三步完成,所以采用树状图法比较简单,根据树状图可以求得所有等可能的结果与出现三次正面朝上的情况,再根据概率公式求解即可.【详解】画树状图得:∴一共有共8种等可能的结果;出现3次正面朝上的有1种情况.∴出现3次正面朝上的概率是故答案为.点评:此题考查了树状图法概率.注意树状图法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】根据A、B坐标求出直线AB的解析式后,求得AB中点M的坐标,连接PM,在等边△PAB中,M为AB中点,所以PM⊥AB,,再求出直线PM的解析式,求出点P坐标;在Rt△PAM中,AP=AB=5,,即且a>0,解得a>0,即,将a代入直线PM的解析式中求出b的值,最后计算2(a-b)的值即可;【详解】解:∵A(4,0),B(0,3),∴AB=5,设,∴,∴,∴,∵A(4,0)B(0,3),∴AB中点,连接PM,在等边△PAB中,M为AB中点,∴PM⊥AB,,∴,∴设直线PM的解析式为,∴,∴,∴,∴,在Rt△PAM中,AP=AB=5,∴,∴,∴,∴,∵a>0,∴,∴,∴;【点睛】本题主要考查了一次函数的综合应用,掌握一次函数是解题的关键.15、③④⑤【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题.【详解】解:由图象可得,抛物线开口向下,则a<0,抛物线与y轴交于正半轴,则c>0,对称轴在y轴右侧,则与a的符号相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①错误,
当x=-1时,y=a-b+c<0,得b>a+c,故②错误,
∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(x1,0),且-1<x1<0,对称轴x=1,
∴x=2时的函数值与x=0的函数值相等,
∴x=2时,y=4a+2b+c>0,故③正确,
∵x=-1时,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正确,
由图象可知,x=1时,y取得最大值,此时y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正确,
故答案为:③④⑤.【点睛】本题考查二次函数图象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.16、1【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17、【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.【详解】一辆向左转,一辆向右转的情况有两种,则概率是.【点睛】本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.18、x1=0,x2=1【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.【点睛】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.三、解答题(共78分)19、(1)详见解析;(2)详见解析【分析】(1)根据题意得出,,根据AAS即可证明;(2)由(1)可得到,再根据菱形的性质得出,即可证明平行四边形OCFD是矩形.【详解】证明:(1),,.E是CD中点,,又(AAS)(2),,.,四边形OCFD是平行四边形,平行四边形ABCD是菱形,.平行四边形OCFD是矩形.【点睛】此题考查矩形的判定和全等三角形的判定与性质,平行四边形的性质,解题关键在于利用全等三角形的性质进行解答.20、【分析】连BB',根据旋转的性质及已知条件可知△ABB'是等边三角形,进而得出∠CBB'=90°,再由勾股定理计算的长度即可.【详解】解:连BB'.∵∠ACB=90°,∠BAC=60°∴∠ABC=30°,AB=2AC=4,BC=由旋转可知:AB=AB',∠BAB'=60°∴△ABB'是等边三角形∴BB'=AB=4,∠ABB'=60°∴∠CBB'=90°∴B'C=【点睛】本题考查了旋转的性质、直角三角形的性质、等边三角形的性质,灵活运用旋转的性质是解题的关键.21、(1)①见解析,②2;(2)见解析【分析】(1)①先根据圆周角定理得出,再得出,再根据角平分线的定义得出,最后根据三角形外角定理即可求证;②取中点,连接,可得是中位线,根据平行线的性质得,然后根据等腰三角形的性质得出,最后再根据中位线的性质得出;(2)上截取,连接,由题意先得出,再得出,然后由旋转性质得、,再根据同角的补角相等得出,然后证的,最后得出即可证明.【详解】解:(1)①证明:为的直径,.,,..平分,.,,.;②解法一:如图,取中点,连接,为的中点,,..,,..;解法二:如图,作,垂足为,平分,,.......在中,.;解法三:如图,作,垂足为,设平分,,.∴∴,即∴解得:∴(2)证明(法一):如图,在上截取,连接.,....由旋转性质得,,.,..(没写不扣分)...为的切线.证法二:如图,延长到,使.由旋转性质得,,..,..(没写不扣分),.,.......为的切线.证法三:作交延长线于点.(余下略)由旋转性质得,,∴,∴.∵∴∴、∴∴∴∴∵为的直径,∴∴∴∴.∴为的切线.【点睛】本题主要考察圆周角定理、角平分线定义、中位线性质、全等三角形的判定及性质等,准确作出辅助线是关键.22、(1)AE=;(2)证明见解析.【分析】(1)根据题意可得:AB=AC=6,可得AO=3,根据勾股定理可求BO的值,根据S△ABO=AB×BO=BO×AE,可求AE的长度.(2)延长AE到P,使AP=BF,可证△ABF≌△APC,可得AF=PC.则GA=PC,由AG⊥AF,AE⊥BE可得∠GAH=∠BFA=∠APC,可证△AGH≌△PHC,结论可得.【详解】解:(1)∵AB=AC,AB⊥AC,BC=6∴AB2+AC2=BC2,∴2AC2=72∴AC=AB=6∵四边形ABCD是平行四边形∴AO=CO=3在Rt△AOB中,BO==3∵S△ABO=AB×BO=BO×AE∴3×6=3×AE∴AE=(2)如图:延长AE到P,使AP=BF∵∠BAC=90°,AE⊥BE∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°∴∠ABE=∠CAE且AB=AC,BF=AP∴△ABF≌△APC∴AF=PC,∠AFB=∠APC∵AG⊥AF,AG=AF∴AG=PC∵∠GAH=∠GAF+∠FAE=90°+∠FAE,∠AFB=∠AEB+∠FAE=90°+∠FAE∴∠GAH=∠AFB∴∠AFB=∠GAH=∠APC,且AG=PC,∠GHA=∠CHP∴△AGH≌△CHP∴GH=HC【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形是解决问题的关键.23、1【分析】由勾股定理求出AB=1,由旋转的性质得出BE=BC=6,即可得出答案.【详解】∵在△ABC中,∠C=90°,CB=6,CA=8,∴AB==10,由旋转的性质得:BE=BC=6,∴AE=AB﹣BE=10﹣6=1.【点睛】本题考查了旋转的性质以及勾股定理;熟练掌握旋转的性质是解题的关键.24、见解析【分析】由已知易得四边形AEDF是平行四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃工业职业技术学院《医疗器械研发管理与产品认证》2023-2024学年第二学期期末试卷
- 2025年青海省海东市平安区第二中学高三第九次模拟物理试题试卷含解析
- 菏泽职业学院《人力资源管理法规政策》2023-2024学年第二学期期末试卷
- 蜜蜂自然课程讲解
- 2025年贵州省铜仁地区松桃县市级名校初三1月联考化学试题试卷含解析
- 邢台学院《英美文学概论》2023-2024学年第一学期期末试卷
- 漳州科技职业学院《经贸日语》2023-2024学年第二学期期末试卷
- 湖北省宣恩县2025届初三2月月考试卷物理试题含解析
- 2025年天津市滨海新区名校初三下学期第二次阶段(期中)考试化学试题含解析
- 华南农业大学《体育(一)》2023-2024学年第二学期期末试卷
- 江铜集团招聘笔试冲刺题2025
- 电感器在DC-DC转换器中的应用考核试卷
- 电梯扶梯管理制度
- 考研学习笔记 《微生物学教程》(第3版)笔记和课后习题(含考研真题)详解
- 【MOOC】电子数据取证技术-南京邮电大学 中国大学慕课MOOC答案
- 【MOOC】农作学-西北农林科技大学 中国大学慕课MOOC答案
- 通信行业网络性能优化与安全防护措施研究
- 项目一任务三学包粽子课件浙教版初中劳动技术七年级下册
- 2024年4月自考《市场营销学试题》真题完整试卷
- DL-T+5759-2017配电系统电气装置安装工程施工及验收规范
- 中医类新技术新项目
评论
0/150
提交评论