版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3 C. D.2.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.3.下列图形,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正五边形 C.等腰直角三角形 D.矩形4.某楼盘2016年房价为每平方米11000元,经过两年连续降价后,2018年房价为9800元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为()A.9800(1-x)2+9800(1-x)+9800=11000 B.9800(1+x)2+9800(1+x)+9800=11000C.11000(1+x)2=9800 D.11000(1-x)2=98005.下列标志既是轴对称图形又是中心对称图形的是().A. B.C. D.6.如图,为⊙O的直径,弦于,则下面结论中不一定成立的是()A. B.C. D.7.如图,所示的计算程序中,y与x之间的函数关系对应的图象所在的象限是()A.第一象限 B.第一、三象限 C.第二、四象限 D.第一、四象限8.在二次函数的图像中,若随的增大而增大,则的取值范围是A. B. C. D.9.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的直径为5,BC=4,则AB的长为()A.2 B.2 C.4 D.510.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,为正五边形的一条对角线,则∠=_____________.12.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.13.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.14.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值是____.15.如图,,,,分别是正方形各边的中点,顺次连接,,,.向正方形区域随机投掷一点,则该点落在阴影部分的概率是_______.16.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.17.如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限.连接并延长交双曲线与点.过点作轴,垂足为点.过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_________.18.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于__________________.三、解答题(共66分)19.(10分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=1.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.20.(6分)已知=,求的值.21.(6分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.22.(8分)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:,,,,(理解应用)请你利用以上信息求下列各式的值:(1);(2)(拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)23.(8分)如图所示,已知在平面直角坐标系中,抛物线(其中、为常数,且)与轴交于点,它的坐标是,与轴交于点,此抛物线顶点到轴的距离为4.(1)求抛物线的表达式;(2)求的正切值;(3)如果点是抛物线上的一点,且,试直接写出点的坐标.24.(8分)如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.25.(10分)小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.(1)求∠ACB的度数;(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)26.(10分)某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?
参考答案一、选择题(每小题3分,共30分)1、C【分析】解直角三角形求得AB=2,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=2x,根据三角形面积公式即可得到S△BDHBD•ADx(2x)(x)2,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=2x,∴S△BDHBD•ADx(2x)(x)2,∴△BDH面积的最大值是.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.2、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【点睛】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3、D【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、D【分析】设该楼盘这两年房价每年平均降低率为x,则第一次降价后房价为每平方米11000(1-x)元,第二次降价后房价为每平方米11000(1-x)2元,然后找等量关系列方程即可.【详解】解:设该楼盘这两年房价每年平均降低率为x,则由题意得:11000(1-x)2=9800故答案为D.【点睛】本题考查了一元二次方程的应用,审清题意、找到等量关系是解决问题的关键.5、B【分析】根据轴对称图形与中心对称图形的定义解答.【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是中心对称图形,不是轴对称图形;D、是轴对称图形,不是中心对称图形.故选:B.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、D【分析】根据垂径定理分析即可.【详解】根据垂径定理和等弧对等弦,得A.B.
C正确,只有D错误.故选D.【点睛】本题考查了垂径定理,熟练掌握垂直于弦(非直径)的直径平分弦且平分这条弦所对的两条弧是解题的关键.7、C【分析】根据输入程序,求得y与x之间的函数关系是y=-,由其性质判断所在的象限.【详解】解:x的倒数乘以-5为-,即y=-,则函数过第二、四象限,故选C.【点睛】对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.8、A【解析】∵二次函数的开口向下,∴所以在对称轴的左侧y随x的增大而增大.∵二次函数的对称轴是,∴.故选A.9、A【分析】连接BO,根据垂径定理得出BD,在△BOD中利用勾股定理解出OD,从而得出AD,在△ABD中利用勾股定理解出AB即可.【详解】连接OB,∵AO⊥BC,AO过O,BC=4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【点睛】本题考查圆的垂径定理及勾股定理的应用,关键在于熟练掌握相关的基础性质.10、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.二、填空题(每小题3分,共24分)11、36°【解析】360°÷5=72°,180°-72°=108°,所以,正五边形每个内角的度数为108°,即可知∠A=108°,又知△ABE是等腰三角形,则∠ABE=(180°-108°)=36°.12、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【详解】:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵AD⊥BC,
∴∠ADB=∠CDA=90°,
∴∠B+∠BAD=90°,
∴∠B=∠CAD,又∠ADB=∠CDA=90°,
∴△ABD∽△CAD,
∴,
∵∠B=60°,
∴,
∴.
故答案为1:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.13、x=﹣1【分析】根据一元二次方程的两根得出抛物线与x轴的交点,再利用二次函数的对称性可得答案.【详解】∵一元二次方程的两根为﹣5和3,∴二次函数图象与x轴的交点为(﹣5,0)和(3,0),由抛物线的对称性知抛物线的对称轴为,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴交点坐标与对应一元二次方程间的关系及抛物线的对称性.14、1或-【解析】由题意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案为:1或-.15、【分析】根据三角形中位线定理判定阴影部分是正方形,然后按照概率的计算公式进行求解.【详解】解:连接AC,BD∵,,,分别是正方形各边的中点∴,∠HEF=90°∴阴影部分是正方形设正方形边长为a,则∴∴向正方形区域随机投掷一点,则该点落在阴影部分的概率是故答案为:【点睛】本题考查三角形中位线定理及正方形的性质和判定以及概率的计算,掌握相关性质定理正确推理论证是本题的解题关键.16、【详解】设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以所围成的圆锥的高=考点:圆锥的计算.17、-3<x<-1【分析】根据点A的坐标求出中k,再根据点B在此图象上求出点B的横坐标m,根据结合图象即可得到答案.【详解】∵A(-1,3)在上,∴k=-3,∵B(m,1)在上,∴m=-3,由图象可知:当时,点P在线段AB上,∴点P的横坐标x的取值范围是-3<x<-1,故答案为:-3<x<-1.【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键.18、【解析】试题分析:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE=.故选B.考点:相似三角形的判定与性质.三、解答题(共66分)19、(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<时,存在2个矩形EFGH;③当m=时,存在1个矩形EFGH;④当<m≤时,存在2个矩形EFGH;⑤当<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)
(2)∵O到菱形边的距离为,当⊙O与AB相切时AE=,当过点A,C时,⊙O与AB交于A,E两点,此时AE=×2=,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.20、-7【分析】根据等式的性质可得=b,再根据分式的性质可得答案.【详解】解:由=,得=b.∴【点睛】本题考查了比例的性质和分式性质,利用等式性质求得=b是解题关键.21、(1)剩余木料的面积为6dm1;(1)1.【分析】(1)先确定两个正方形的边长,然后结合图形解答即可;(1)估算和的大小,结合题意解答即可.【详解】解:(1)∵两个正方形的面积分别为18dm1和31dm1,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm1);(1)4<3<4.5,1<<1,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出1块这样的木条,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握无理数的估算方法是解答本题的关键.22、(1);(2);(3)山峰的高度即的长大约是719步【分析】(1)),直接利用所给等量关系式代入求解即可;(2),直接利用所给等量关系式代入求解即可;(3)连接,返向延长交于点,再用含AK的式子表示出KE,KC,再根据KE=CK+1000求解即可.【详解】解:(1)(2)(3)连接,返向延长交于点,则,步,在中,同理:∵∴∴解得:(步)∴(步)答:山峰的高度即的长大约是719步.【点睛】本题考查的知识点是锐角三角函数,解题的关键是读懂题意,能够灵活运用所给等量关系式.23、(1);(2);(2)点的坐标是或【分析】(1)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入求得a的值即可;
(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;
(2)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=2t,P(-2t,2+t),将P(-2t,2+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【详解】解:(1)抛物线的对称轴为x=-=-1.
∵a<0,
∴抛物线开口向下.
又∵抛物线与x轴有交点,
∴C在x轴的上方,
∴抛物线的顶点坐标为(-1,4).
设抛物线的解析式为y=a(x+1)2+4,将点(-2,0)代入得:4a+4=0,解得:a=-1,
∴抛物线的解析式为y=-x2-2x+2.
(2)将x=0代入抛物线的解析式得:y=2,
∴B(0,2).
∵C(-1,4)、B(0,2)、A(-2,0),
∴BC=,AB=2,AC=2,
∴BC2+AB2=AC2,
∴∠ABC=90°.
∴.即的正切值等于.
(2)如图1所示:记抛物线与x轴的另一个交点为D.
∵点D与点A关于x=-1对称,
∴D(1,0).
∴tan∠DBO=.
又∵由(2)可知:tan∠CAB=.
∴∠DBO=∠CAB.
又∵OB=OA=2,
∴∠BAO=∠ABO.
∴∠CAO=∠ABD.
∴当点P与点D重合时,∠ABP=∠CAO,
∴P(1,0).
如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.
∵BF∥AO,
∴∠BAO=∠FBA.
又∵∠CAO=∠ABP,
∴∠PBF=∠CAB.
又∵PE∥BF,
∴∠EPB=∠PBF,
∴∠EPB=∠CAB.
∴tan∠EPB=.
设BE=t,则PE=2t,P(-2t,2+t).
将P(-2t,2+t)代入抛物线的解析式得:y=-x2-2x+2得:-9t2+6t+2=2+t,解得t=0(舍去)或t=.
∴P(-,).
综上所述,点P的坐标为P(1,0)或P(-,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含t的式子表示点P的坐标是解题的关键.24、(1)EF=2;(2)y=x(0≤x≤1);(3)满足条件的CN的值为或1.【分析】(1)在Rt△BEF中,利用勾股定理即可解决问题.(2)根据速度比相等构建关系式解决问题即可.(3)分两种情形如图3﹣1中,当MN∥DF,延长FE交DC的延长线于H.如图3﹣2中,当MN∥DE,分别利用平行线分线段成比例定理构建方程解决问题即可.【详解】解:(1)∵四边形ABCD是矩形,∴∠B=90°,AB=CD=6,AD=BC=8,∵AF=BE=2,∴BF=6﹣2=4,∴EF===2.(2)由题意:=,∴=,∴y=x(0≤x≤1).(3)如图3﹣1中,延长FE交DC的延长线于H.∵△EFB∽△EHC,∴==,∴==,∴EH=6,CH=1,当M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浅谈“双减”背景下三年级英语作业设计有效性的策略
- 《水电站》重点笔记
- SZSD 0067-2024智慧社区 老年人智能助餐场景设计指南
- 海口-PEP-2024年11版小学三年级下册英语第六单元真题
- 物质推断与转化(专项训练)-2023年中考化学二轮复习(原卷版)
- 2024年民宿旅游项目资金申请报告代可行性研究报告
- 强迫对流管簇管外放热系数测定实验
- 【沪科】期末模拟卷【九年级上下册】
- 护士聘岗个人工作总结范文(3篇)
- 读书伴我行演讲稿(35篇)
- 2025届山东省部分地区高三语文上学期期初试题汇编:写作专题
- TCECA-G 0304-2024 数字化碳管理平台 总体框架
- 风力发电项目施工方案
- 2024-2030年云网融合行业市场发展分析及发展趋势与投资前景研究报告
- 2024-2025学年全国中学生天文知识竞赛考试题库(含答案)
- 2024-2025年新教材高中生物 第3章 第2节 第2课时 细胞器之间的协调配合和生物膜系统教案 新人教版必修1
- TSDPIA 03-2023 宠物猫砂生产质量安全管理规范
- 企业灭火和应急疏散应急预案
- 慕课《如何写好科研论文》期末考试答案
- 2025届高考写作指导:二元思辨类作文指导
- 高效能会议管理制度
评论
0/150
提交评论