版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.62.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元3.已知关于的一元二次方程的两个根分别是,,且满足,则的值是()A.0 B. C.0或 D.或04.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.5.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2 B. C.3 D.6.正六边形的半径为4,则该正六边形的边心距是()A.4 B.2 C.2 D.7.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,2),OC与⊙D相交于点C,∠OCA=30°,则图中阴影部分的面积为()A.2π﹣2 B.4π﹣ C.4π﹣2 D.2π﹣8.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是()A.A点在⊙O外 B.A点在⊙O上 C.A点在⊙O内 D.不能确定9.在开展“爱心捐助”的活动中,某团支部8名团员捐款的数额(单位:元)分别为3,5,6,5,6,5,5,10,这组数据的中位数是()A.3元 B.5元 C.5.5元 D.6元10.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30° B.45° C.60° D.67.5°11.正五边形内接于圆,连接分别与交于点,,连接若,下列结论:①②③四边形是菱形④;其中正确的个数为()A.个 B.个 C.个 D.个12.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3 C. D.二、填空题(每题4分,共24分)13.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.14.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.15.分解因式:a2b﹣b3=.16.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.17.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是______________.18.已知函数的图象如图所示,若矩形的面积为,则__________.三、解答题(共78分)19.(8分)如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF20.(8分)已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.21.(8分)如图,一次函数y1=x+2的图象与反比例函数y2=(k≠0)的图象交于A、B两点,且点A的坐标为(1,m).(1)求反比例函数的表达式及点B的坐标;(2)根据图象直接写出当y1>y2时x的取值范围.22.(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,;(2)求在旋转过程中,CA所扫过的面积.23.(10分)在锐角三角形中,已知,,的面积为,求的余弦值.24.(10分)如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.(1)的外接圆圆心的坐标为.(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为.(3)的面积为个平方单位.25.(12分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.26.如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积
参考答案一、选择题(每题4分,共48分)1、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.2、C【解析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量3、C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2-2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【详解】解:∵x1、x2是一元二次方程x2-mx+2m-1=0的两个实数根,
∴x1+x2=-(2m+1),x1x2=m-1,
∵x12+x22=(x1+x2)2-2x1x2=3,
∴[-(2m+1)]2-2(m-1)=3,
解得:m1=0,m2=,
又∵方程x2-mx+2m-1=0有两个实数根,
∴△=(2m+1)2-4(m-1)≥0,
∴当m=0时,△=5>0,当m=时,△=6>0
∴m1=0,m2=都符合题意.故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.4、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【点睛】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.5、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根据根与系数的关系即可求得a的值.【详解】过点C作CD⊥AB于点D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),∴A(x1,0),B(x2,0).依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化简得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是图象上的一点,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故选:D.【点睛】本题是二次函数的综合试题,考查了二次函数的性质和图象,解答本题的关键是注意数形结合思想.6、C【分析】分析出正多边形的内切圆的半径就是正六边形的边心距,即为每个边长为4的正三角形的高,从而构造直角三角形即可解.【详解】解:半径为4的正六边形可以分成六个边长为4的正三角形,
而正多边形的边心距即为每个边长为4的正三角形的高,
∴正六多边形的边心距==2.故选C.【点睛】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算.7、A【分析】从图中明确S阴=S半-S△,然后依公式计算即可.【详解】∵∠AOB=90°,∴AB是直径,连接AB,根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知OB=2,∴OA=OBtan∠ABO=OBtan30°=2,AB=AO÷sin30°=4即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO的面积,故选A.【点睛】辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.8、A【详解】解:∵5>3∴A点在⊙O外故选A.【点睛】本题考查点与圆的位置关系.9、B【分析】将这组数据从小到大的顺序排列,最中间两个位置的数的平均数为中位数.【详解】将这组数据从小到大的顺序排列3,5,5,5,5,6,6,10,最中间两个位置的数是5和5,所以中位数为(5+5)÷2=5(元),故选:B.【点睛】本题考查中位数,熟练掌握中位数的求法是解答的关键.10、D【分析】利用圆的切线的性质定理、等腰三角形的性质即可得出.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,在Rt△OCD中,又CD=OC,∴∠COD=45°.∵OC=OA,∴∠OCA=×45°=22.5°.∴∠PCA=90°-22.5°=67.5°.故选:D.【点睛】本题考查切线的性质定理,熟练掌握圆的切线的性质定理、等腰三角形的性质是解题的关键.11、B【分析】①先根据正五方形ABCDE的性质求得∠ABC,由等边对等角可求得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD,求得∠CDF=∠CFD,即可求得答案;②证明△ABF∽△ACB,得,代入可得BF的长;③先证明CF∥DE且,证明四边形CDEF是平行四边形,再由证得答案;④根据平行四边形的面积公式可得:,即可求得答案.【详解】①∵五方形ABCDE是正五边形,,
∴,
∴,
∴,
同理得:,
∵,,
∴,
∵,∴,∴,则,
∴,
∵,
∴,
∴,
∴;
所以①正确;②∵∠ABE=∠ACB=36°,∠BAF=∠CAB,
∴△ABF∽△ACB,
∴,∵,∴,∵,∴,∴,解得:(负值已舍);所以②正确;③∵,,
∴,
∴CF∥DE,
∵,
∴四边形CDEF是平行四边形,∵,∴四边形CDEF是菱形,所以③正确;④如图,过D作DM⊥EG于M,
同①的方法可得,,
∴,,∴,所以④错误;综上,①②③正确,共3个,故选:B【点睛】本题考查了相似三角形的判定和性质,勾股定理,圆内接正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握圆内接正五边形的性质是解题的关键.12、C【分析】解直角三角形求得AB=2,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=2x,根据三角形面积公式即可得到S△BDHBD•ADx(2x)(x)2,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=2x,∴S△BDHBD•ADx(2x)(x)2,∴△BDH面积的最大值是.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.二、填空题(每题4分,共24分)13、125°【分析】根据等腰直角三角形的性质得到∠CAB=45°,根据旋转的性质得到∠BAB′=80°,结合图形计算即可.【详解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋转的性质可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案为:125°.【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.14、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.15、b(a+b)(a﹣b)【分析】先提取公因式,再利用平方差公式进行二次因式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【详解】解:a2b﹣b3,=b(a2﹣b2)=b(a+b)(a﹣b).故答案为b(a+b)(a﹣b).16、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)
故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.17、48π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【详解】解:侧面积是:,底面圆半径为:,底面积,故圆锥的全面积是:,故答案为:48π【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18、-6【分析】根据题意设AC=a,AB=b解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=-AB*AC=-6【详解】解:由题意得设AC=a,AB=b解析式为y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【点睛】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.三、解答题(共78分)19、1.【解析】(1)根据等边三角形性质得出AB=AE,AP=AQ,∠ABE=∠BAE=∠PAQ=60°,求出∠BAP=∠EAQ,根据SAS证△BAP≌△EAQ,推出∠AEQ=∠ABC=90°;
(1)根据等边三角形性质求出∠ABE=∠AEB=60°,根据∠ABC=90°=∠AEQ求出∠BEF=∠EBF=30°,即可得出答案.(1)解:△BEC是等腰三角形,理由是:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ECB,∵CE平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,∴△BEC是等腰三角形.(1)解:∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠AEB=45°=∠ABE,∴AE=AB=,由勾股定理得:BE=,即BC=BE=1.“点睛”本题考查了等边三角形的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用.20、(1),D的坐标为;(2)①;②以A,F,O为顶点的三角形与相似,F点的坐标为或.【分析】(1)将A、B两点的坐标代入二次函数解析式,用待定系数法即求出抛物线对应的函数表达式,可求得顶点;(2)①由A、C、D三点的坐标求出,,,可得为直角三角形,若,则点F为AD的中点,可求出k的值;②由条件可判断,则,若以A,F,O为顶点的三角形与相似,可分两种情况考虑:当或时,可分别求出点F的坐标.【详解】(1)抛物线过点,,,解得:,抛物线解析式为;,顶点D的坐标为;(2)①在中,,,,,,,,,,为直角三角形,且,,F为AD的中点,,;②在中,,在中,,,,,,若以A,F,O为顶点的三角形与相似,则可分两种情况考虑:当时,,,设直线BC的解析式为,,解得:,直线BC的解析式为,直线OF的解析式为,设直线AD的解析式为,,解得:,直线AD的解析式为,,解得:,.当时,,,,直线OF的解析式为,,解得:,,综合以上可得F点的坐标为或.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质和直角三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.21、(1)y=,B(﹣3,﹣1);(2)﹣3<x<0或x>1【分析】(1)把A点坐标代入一次函数解析式可求得m的值,可得到A点坐标,再把A点坐标代入反比例函数解析式可求得k的值,解析式联立,解方程即可求得B的坐标;(2)根据图象观察直线在双曲线上方对应的x的范围即可求得.【详解】解:(1)∵一次函数图象过A点,∴m=1+2,解得m=3,∴A点坐标为(1,3),又∵反比例函数图象过A点,∴k=1×3=3∴反比例函数y=,解方程组得:或,∴B(﹣3,﹣1);(2)当y1>y2时x的取值范围是﹣3<x<0或x>1.【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数法的应用.22、(1)见解析;(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可.
(2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计算即可.【详解】解:(1)△A1B1C为所求作的图形:(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:.【点睛】本题考查的知识点是作图-旋转变换,扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换,扇形面积的计算.23、【分析】由三角形面积和边长可求出对应边的高,再由勾股定理求出余弦所需要的边长即可解答.【详解】解:过点点作于点,∵的面积,∴,在中,由勾股定理得,所以【点睛】本题考查了解直角三角形,掌握余弦的定义(余弦=邻边:斜边)和用面积求高是解题的关键.24、(1);(2)①见解析;②;(3)4【分析】(1)由于三角形的外心是三边垂直平分线的交点,故只要利用网格特点作出AB与AC的垂直平分线,其交点即为圆心M;(2)根据位似图形的性质画图即可;由位似图形的性质即可求得点D坐标;(3)利用(2)题的图形,根据三角形的面积公式求解即可.【详解】解:(1)如图1,点M是AB与AC的垂直平分线的交点,即为△ABC的外接圆圆心,其坐标是(2,2);故答案为:(2,2);(2)①如图2所示;②点坐标为(4,6);故答案为:(4,6);(3)的面积=个平方单位.故答案为:4.【点睛】本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 520特别企划:合同优惠活动方案
- 2025年江苏省电子产品维修服务合同(个人用户版)(征求意见稿)
- 两人合作建房合同范本详解
- 个人资金借用合同模板大全
- 个人借款与补偿贸易合同协议
- 乳制品经销合同
- 个人信用担保合同示例
- 2025年客户协议履行规范
- 中外合资经营企业合同范本(新能源)
- 个人房产买卖合同标准范本范例
- 军事英语词汇整理
- 家庭教育指导委员会章程
- 高三一本“临界生”动员会课件
- 浙江省2023年中考科学真题全套汇编【含答案】
- DB31-T 1440-2023 临床研究中心建设与管理规范
- 老客户维护方案
- 高处作业安全教育培训讲义课件
- dk胶原蛋白培训课件
- 万科物业管理公司全套制度(2016版)
- 动物检疫技术-动物检疫处理(动物防疫与检疫技术)
- 英语经典口语1000句
评论
0/150
提交评论