版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.1692.如图所示几何体的左视图是()A. B. C. D.3.如图,▱ABCD的对角线AC,BD交于点O,已知,,,则的周长为A.13 B.17 C.20 D.264.如图,矩形中,,,点为矩形内一动点,且满足,则线段的最小值为()A.5 B.1 C.2 D.35.下列一元二次方程中,两实数根之和为3的是()A. B. C. D.6.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4 B.4+4 C.8﹣4 D.+17.四张背面完全相同的卡片,正面分别画有平行四边形、菱形、等腰梯形、圆,现从中任意抽取一张,卡片上所画图形恰好是轴对称图形的概率为()A.1 B. C. D.8.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(
)A.9分 B.8分 C.7分 D.6分9.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%10.如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A. B. C. D.11.在下列图形中,是中心对称图形而不是轴对称图形的是()A.圆 B.等边三角形 C.梯形 D.平行四边形12.下列函数属于二次函数的是A. B.C. D.二、填空题(每题4分,共24分)13.已知是方程的根,则代数式的值为__________.14.圆锥的母线长为,底面半径为,那么它的侧面展开图的圆心角是______度.15.在中,,,,则的长是__________.16.如图,在△ABC中,中线BF、CE交于点G,且CE⊥BF,如果,,那么线段CE的长是______.17.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.18.公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了有关黄金矩形的问题.并建立起比例理论,他认为所谓黄金分割,指的是把长为L的线段分为两部分,使其中较长部分对于全部之比,等于较短部分对于较长部分之比.所谓黄金矩形指的就是矩形的宽与长的比适合这一比例.则在黄金矩形中宽与长的比值是______.三、解答题(共78分)19.(8分)车辆经过某市收费站时,可以在4个收费通道A、B、C、D中,可随机选择其中的一个通过.(1)车辆甲经过此收费站时,选择A通道通过的概率是;(2)若甲、乙两辆车同时经过此收费站,请用列表法或树状图法确定甲乙两车选择不同通道通过的概率.20.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.21.(8分)已知与成反比例,当时,,求与的函数表达式.22.(10分)已知:如图,正方形为边上一点,绕点逆时针旋转后得到.如果,求的度数;与的位置关系如何?说明理由.23.(10分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.24.(10分)已知是的反比例函数,下表给出了与的一些值:141(1)写出这个反比例函数表达式;(2)将表中空缺的值补全.25.(12分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴、垂足为点,反比例函数的图象经过的中点、且与相交于点.经过、两点的一次函数解析式为,若点的坐标为,.且.(1)求反比例函数的解析式;(2)在直线上有一点,的面积等于.求满足条件的点的坐标;(3)请观察图象直接写出不等式的解集.26.如图,的顶点是双曲线与直线在第二象限的交点.轴于,且.(1)求反比例函数的解析式;(2)直线与双曲线交点为、,记的面积为,的面积为,求
参考答案一、选择题(每题4分,共48分)1、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,
第二层有1+6=7个花盆,
第三层有1+6+12=19个花盆,
第四层有1+6+12+18=37个花盆,
…
∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,
∴当n=7时,
∴花盆的个数是1+3×7×(7-1)=1.
故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.2、B【分析】根据从左面看得到的图形是左视图,可得答案.【详解】解:如图所示,几何体的左视图是:.故选:B.【点睛】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.3、B【分析】由平行四边形的性质得出,,,即可求出的周长.【详解】四边形ABCD是平行四边形,,,,的周长.故选B.【点睛】本题主要考查了平行四边形的性质,并利用性质解题平行四边形基本性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.4、B【分析】通过矩形的性质和等角的条件可得∠BPC=90°,所以P点应该在以BC为直径的圆上,即OP=4,根据两边之差小于第三边及三点共线问题解决.【详解】如图,∵四边形ABCD为矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴点P在以BC为直径的圆⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴当P,D,O三点共线时,PD最小,∴PD的最小值为OD-OP=5-4=1.故选:B.【点睛】本题考查矩形的性质,勾股定理,线段最小值问题及圆的性质,分析出P点的运动轨迹是解答此题的关键.5、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有△≥0且,分别计算即可判断.【详解】解:A、∵a=1,b=3,c=-3,∴,;B、∵a=2,b=-3,c=-3,∴,;C、∵a=1,b=-3,c=3,∴,原方程无解;D、∵a=1,b=-3,c=-3,∴,.故选:D.【点睛】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况,若方程有根方可用根与系数关系.6、A【解析】试题分析:∵四边形ABCD是正方形,∴∠D=90°,∠ACD=15°,AD=CD=2,则S△ACD=AD•CD=×2×2=2;AC=AD=2,则EC=2﹣2,∵△MEC是等腰直角三角形,∴S△MEC=ME•EC=(2﹣2)2=6﹣1,∴阴影部分的面积=S△ACD﹣S△MEC=2﹣(6﹣1)=1﹣1.故选A.考点:正方形的性质.7、B【解析】以上图形中轴对称图形有菱形、等腰梯形、圆,所以概率为3÷4=.故选B8、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.10、D【分析】过点作轴于点,由直角三角形的性质求出长和长即可.【详解】解:过点作轴于点,∵四边形为菱形,,∴,OB⊥AC,,∵,∴,∴,∴,,∴,∴.故选D.【点睛】本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.11、D【解析】解:选项A、是中心对称图形,也是轴对称图形,故此选项错误;选项B、不是中心对称图形,是轴对称图形,故此选项错误;选项C、不是中心对称图形,是轴对称图形,故此选项错误;选项D、是中心对称图形,不是轴对称图形,故此选项正确;故选D.12、A【分析】一般地,我们把形如y=ax²+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.【详解】由二次函数的定义可知A选项正确,B和D选项为一次函数,C选项为反比例函数.【点睛】了解二次函数的定义是解题的关键.二、填空题(每题4分,共24分)13、1【分析】把代入已知方程,并求得,然后将其整体代入所求的代数式进行求值即可.【详解】解:把代入,得,解得,所以.故答案是:1.【点睛】本题考查一元二次方程的解以及代数式求值,注意解题时运用整体代入思想.14、1【分析】易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.【详解】∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,,解得n=1.故答案为1.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.15、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.16、【分析】根据题意得到点G是△ABC的重心,根据重心的性质得到DG=AD,CG=CE,BG=BF,D是BC的中点,由直角三角形斜边中线等于斜边一半可得BC=5,再根据勾股定理求出GC即可解答..【详解】解:延长AG交BC于D点,∵中线BF、CE交于点G,∵△ABC的两条中线AD、CE交于点G,
∴点G是△ABC的重心,D是BC的中点,
∴AG=AD,CG=CE,BG=BF,∵,,∴,.∵CE⊥BF,即∠BGC=90°,∴BC=2DG=5,在Rt△BGC中,CG=,∴,故答案为:.【点睛】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.理解三角形重心的性质是解题的关键.17、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.18、【分析】根据黄金矩形指的就是矩形的宽与长的比适合黄金分割比例,所以求出黄金分割比例即可,设线段长为1,较长的部分为x,则较短的部分为1-x,根据较长部分对于全部之比,等于较短部分对于较长部分之比,求出x,即可得到比值.【详解】解:设线段长为1,较长的部分为x,则较短的部分为1-x∴∴x1=,x2=(舍)∴黄金分割比例为:∴黄金矩形中宽与长的比值:故答案为:.【点睛】本题主要考查了黄金分割比例,读懂题意并且列出比例式正确求解是解决本题的关键.三、解答题(共78分)19、(1);(2),图见解析【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】(1)共有4种可能,所以选择A通道通过的概率是.故答案为:,(2)两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.故答案为(1);(2),图见解析【点睛】本题考查了概率公式中的等可能概型,和利用树状图解决实际问题,正确画出树状图是本题的关键.20、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,则抛物线表达式为:y=(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;综上所述,m的值为:3+3或3﹣3或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.21、【分析】根据反比例的定义,设,再将代入求出k,即可求得.【详解】由题意设,将代入得,解得,∴即.【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,与的函数表达式指的是形式,如本题最后结果不可写成.22、(1)20°,(2),详见解析【分析】(1)根据旋转的性质可知△AFD≌△AEB,则有AE=AF,∠DAF=90°,∠AEB=∠DFA=65°,然后利用∠DFE=∠DFA-∠EFA即可求出答案.(2)由旋转的性质得∠EBA=∠FDA,通过等量代换即可得出∠DFA+∠EBA=90°,即BG⊥DF.【详解】解:(1)根据旋转的性质可知:△AFD≌△AEB,即AE=AF,∠DAF=90°,∠AEB=∠DFA=65°,∴∠AFE=45°,∴∠DFE=∠DFA-∠EFA=20°(2)延长BE与DF相交于点G.∵∠DAF=90°,∴∠DFA+∠ADF=90°,∵∠EBA=∠FDA,∴∠DFA+∠EBA=90°,∴BG⊥DF,即BE与DF互相垂直.【点睛】本题主要考查旋转的性质和全等三角形的性质,掌握全等三角形的性质是解题的关键.23、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1+x1)1≥0的形式,通过解不等式可以求得k的值.【详解】(1)∵原方程有两个实数根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴当k≤时,原方程有两个实数根;(1)假设存在实数k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的两根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有当k=1时,上式才能成立;又∵由(1)知k≤,∴不存在实数k使得x1·x1-x11-x11≥0成立.24、(1);(2),-4,,-1,3,2,3,【分析】(1)设出反比例函数解析式,把代入解析式即可得出答案;(2)让的乘积等于3计算可得表格中未知字母的值.【详解】解:(1)设,,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案为:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- HY/T 0414-2024海底地形地貌资料整编技术规范
- 轻工机械生产线招标合同三篇
- 知识的田园幼儿园教学工作计划文档
- 引入精益生产理念的计划
- 大型商业综合体建设工程合同三篇
- 成本控制的关键策略与技巧计划
- 有效沟通与说服技巧培训
- 信阳师范大学《导向设计》2023-2024学年第一学期期末试卷
- 新余学院《英语阅读》2021-2022学年第一学期期末试卷
- 西南交通大学《数据结构实验》2022-2023学年第一学期期末试卷
- 大学美育-美育赏湖南(湖南高速铁路职业技术学院)知到智慧树答案
- 【MOOC】机械设计-北京交通大学 中国大学慕课MOOC答案
- 电梯井脚手架专项施工方案样本
- 2024八大特殊作业安全管理培训
- Unit 4 Plants around us(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- Unit 5 The colourful world Part A Letters and sounds(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024年国家公务员考试《申论》真题(地市级)及答案解析
- 2024-2025大学英语考试六级汉译英中英对照
- 2024版首诊负责制度课件
- 北京市西城区2023-2024学年高一上学期期末考试 语文 含答案
- 2024-2030年噬菌体行业市场现状供需分析及重点企业投资评估规划分析研究报告
评论
0/150
提交评论