版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是()A. B. C. D.2.如图,,,,,互相外离,它们的半径都是,顺次连接五个圆心得到五边形,则图中五个扇形(阴影部分)的总面积是()
A. B. C. D.3.四条线段成比例,其中=3,,,则等于(
)A.2㎝ B.㎝ C. D.8㎝4.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=5.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()A. B. C. D.6.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.7.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.8.如图,AB为圆O直径,C、D是圆上两点,ADC=110°,则OCB度()A.40 B.50 C.60 D.709.下列函数中,变量是的反比例函数是()A. B. C. D.10.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,根据题意列方程组正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在上午的某一时刻身高1.7米的小刚在地面上的影长为3.4米,同时一棵树在地面上的影子长12米,则树的高度为_____米.12.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.13.点A(-2,y1),B(-1,y2)都在反比例函数y=-图象上,则y1_____________y2(选填“﹤”,“>”或”=”)14.直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.15.等腰Rt△ABC中,斜边AB=12,则该三角形的重心与外心之间的距离是_____.16.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.17.如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D=________.18.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,正方形OABC的顶点A、C在坐标轴上,△OCB绕点O顺时针旋转90°得到△ODE,点D在x轴上,直线BD交y轴于点F,交OE于点H,OC的长是方程x2-4=0的一个实数根.(1)求直线BD的解析式.(2)求△OFH的面积.(3)在y轴上是否存在点M,使以点B、D、M三点为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,不必说明理由.20.(6分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.21.(6分)某校在基地参加社会活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留有一个宽为3米的出入口,如图所示.如何设计才能使园地的面积最大?下面是两位同学争议的情境:小军:把它围成一个正方形,这样的面积一定最大.小英:不对啦!面积最大的不是正方形.请根据上面信息,解决问题:(1)设米().①米(用含的代数式表示);②的取值范围是;(2)请你判断谁的说法正确,为什么?22.(8分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五角星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法并用列表或画树状图方法说明原因.23.(8分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.24.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.25.(10分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)26.(10分)已知某二次函数图象上部分点的横坐标、纵坐标的对应值如下表.求此函数表达式.
参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:根据平行投影特点以及图中正六棱柱的摆放位置即可求解.把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.考点:平行投影.2、C【分析】根据圆心角之和等于五边形的内角和,由于半径相等,根据扇形的面积公式计算先算出五边形内部五个扇形的面积之和,再用五个圆的面积之和减去五边形内部五个扇形的面积之和即可求得结果.【详解】∵五边形的内角和是:(5−2)×180°=540°,∴阴影部分的面积之和是:,故选C.【点睛】本题主要考查多边形的内角和以及扇形的面积公式,解决问题的关键是把阴影部分的面积当成一个扇形面积来求,将五边形的内角和理解成圆心角也很关键;这题是易错题,注意是求五边形外部的扇形面积之和.3、A【分析】四条线段a,b,c,d成比例,则=,代入即可求得b的值.【详解】解:∵四条线段a,b,c,d成比例,
∴=,
∴b===2(cm).
故选A.【点睛】本题考查成比例线段,解题关键是正确理解四条线段a,b,c,d成比例的定义.4、B【解析】试题分析:根据行程问题的公式路程=速度×时间,可知汽车行驶的时间t关于行驶速度v的函数关系式为t=.考点:函数关系式5、B【分析】用黄色小球的个数除以总个数可得.【详解】解:搅匀后任意摸出一个球,是黄球的概率为故答案为B.【点睛】本题考查了概率公式,解答的关键在于确定发生事件的总发生数和所求事件发生数.6、D【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴,∴S△DOE:S△AOC=,故选:D.【点睛】此题考查相似三角形的判定及性质,根据BE:EC=1:3得到同高两个三角形的底的关系是解题的关键,再利用相似三角形即可解答.7、C【解析】正面的数字是偶数的情况数是2,总的情况数是5,用概率公式进行计算即可得.【详解】从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选C.【点睛】本题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.8、D【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ADC=110°,即优弧的度数是220°,∴劣弧的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=∠AOC=70°,故选D.【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、B【解析】根据反比例函数的一般形式即可判断.【详解】A.不符合反比例函数的一般形式的形式,选项错误;B.符合反比例函数的一般形式的形式,选项正确;C.不符合反比例函数的一般形式的形式,选项错误;D.不符合反比例函数的一般形式的形式,选项错误.故选B.【点睛】本题考查了反比例函数的定义,熟练掌握反比例函数的一般形式是解题的关键.10、A【解析】本题的等量关系是:木长绳长,绳长木长,据此可列方程组即可.【详解】设木条长为尺,绳子长为尺,根据题意可得:.故选:.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(每小题3分,共24分)11、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.利用相似比和投影知识解题,【详解】∵,∴,即∴树高为1m故答案为:1.【点睛】利用相似比和投影知识解题,在某一时刻,实际高度和影长之比是一定的,此题就用到了这一知识点.12、30°【解析】试题解析:∵关于x的方程有两个相等的实数根,∴解得:∴锐角α的度数为30°;故答案为30°.13、<【分析】根据反比例函数的增减性和比例系数的关系即可判断.【详解】解:∵﹣3<0∴反比例函数y=-在每一象限内,y随x的增大而增大∵-2<-1<0∴y1<y2故答案为:<.【点睛】此题考查的是反比例函数的增减性,掌握反比例函数的增减性与比例系数的关系是解决此题的关键.14、1【解析】连接OA,OB,OC利用小三角形的面积和等于大三角形的面积即可解答【详解】解:连接OA,OB,OC,则点O到三边的距离就是△AOC,△BOC,△AOB的高线,设到三边的距离是x,则三个三角形的面积的和是:AC•x+BC•x+AB•x=AC•BC,由题意可得:AC=4,BC=3,AB=5∴×4•x+×3•x+×5•x=×3×4解得:x=1.故答案为:1.【点睛】本题中点到三边的距离就是直角三角形的内切圆的半径长,内切圆的半径=.15、1.【分析】画出图形,找到三角形的重心与外心,利用重心和外心的性质求距离即可.【详解】如图,点D为三角形外心,点I为三角形重心,DI为所求.∵直角三角形的外心是斜边的中点,∴CD=AB=6,∵I是△ABC的重心,∴DI=CD=1,故答案为:1.【点睛】本题主要考查三角形的重心和外心,能够掌握三角形的外心和重心的性质是解题的关键.16、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.17、65°【解析】试题分析:先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考点:圆周角定理18、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.三、解答题(共66分)19、(1)直线BD的解析式为:y=-x+1;(2)△OFH的面积为;(3)存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【分析】(1)根据求出坐标点B(-2,2),点D(2,0),然后代入一次函数表达式:y=kx+b得,利用待定系数法即可求出结果.(2)通过面积的和差,S△OFH=S△OFD-S△OHD,即可求解.(3)分情况讨论:当点M在y轴负半轴与当点M在y轴正半轴分类讨论.【详解】解:(1)x2-4=0,解得:x=-2或2,
故OC=2,即点C(0,2).∴OD=OC=2,即:D(2,0).又∵四边形OABC是正方形.∴BC=OC=2,即:B(-2,2).将点B(-2,2),点D(2,0)代入一次函数表达式:y=kx+b得:,解得:,
故直线BD的表达式为:y=-x+1.(2)直线BD的表达式为:y=-x+1,则点F(0,1),得OF=1.∵点E(2,2),∴直线OE的表达:y=x.解得:∴H∴S△OFH=S△OFD-S△OHD=-==(3)如图:当点M在y轴负半轴时.情况一:令BD=BM1,此时时,BD=BM1,此时是等腰三角形,此时M1(0,-2).情况二:令M2D=BD,此时,M2D2=BD2=,所以OM=,此时M2(0,-4).如图:当点M在y轴正半轴时.情况三:令M3D=BD,此时,M3D2=BD2=,所以OM=,此时M3(0,4).情况四:令BM4=BD,此时,BM42=BD2=,所以CM=,所以,OM=MC+OC=6,此时M4(0,6).综上所述,存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【点睛】本题考查的是一次函数综合运用,涉及到勾股定理、正方形的基本性质、解一元二次方程等,其中(3),要注意分类求解,避免遗漏.20、米【分析】根据坡度的定义可得,求出AB,再根据勾股定理求【详解】∵坡顶离地面的高度为20米,坡面的坡度为即,∴米由勾股定理得答:坡面的长度为米.【点睛】考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.21、(1)①;②;(2)小英的说法正确,理由见解析【分析】(1)①根据题意表示出来即可;②由题意列出不等式解出即可.(2)先用公式算出面积,再利用配方法求最值即可判断.【详解】(1)①由题意得:.∴答案为:.②≥0,解得.∴.(2)小英的说法正确,理由是:.又在范围内,当时,面积最大.此时,而,四边形不是正方形.小英的说法正确.【点睛】本题考查二次函数的应用,关键在于通过题目找出等量关系列式解题.22、甲的怀疑没有道理,先抓后抓抓中的机会是一样的,图表见解析【分析】先正确画出树状图,根据树状图求出每人抓到五星的概率即可解答.【详解】答:甲的怀疑没有道理,先抓后抓抓中的机会是一样的.用树状图列举结果如下:从图中发现无论三个人谁先抓阄,抓到五星纸片的概率都是一样的,各为.【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23、(1);(2)这个游戏不公平,理由见解析.【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:;(2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=,P(乙胜)=.∴P(甲胜)≠P(乙胜),故这个游戏
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国老年人口失能状况及变化分析
- 人脸识别的智能防疫系统设计
- 会计职业生涯规划
- Unit3 Listening 说课稿2024-2025学年外研版七年级英语上册
- 山东省聊城市阳谷县四校2024-2025学年七年级上学期1月期末水平调研道德与法治试题(含答案)
- 二零二五年度城市停车场施工廉政管理服务合同3篇
- 贵州商学院《软装设计》2023-2024学年第一学期期末试卷
- 信息技术《使用扫描仪》说课稿
- 2025版家庭亲子教育图书订阅服务合同范本3篇
- 二零二五年度家族企业股东股权继承转让协议3篇
- 食堂项目经理培训
- 安全经理述职报告
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题 附答案
- 建筑项目经理招聘面试题与参考回答(某大型集团公司)2024年
- 安保服务评分标准
- (高清版)DB34∕T 1337-2020 棉田全程安全除草技术规程
- 部编版小学语文二年级上册单元测试卷含答案(全册)
- 护理部年终总结
- 部编版三年级上册语文语文期末质量监测(含答题卡)
- KISSSOFT操作与齿轮设计培训教程
- 2024年第二季度粤港澳大湾区经济分析报告-PHBS
评论
0/150
提交评论