版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同2.如果反比例函数y=的图象经过点(﹣5,3),则k=()A.15 B.﹣15 C.16 D.﹣163.如图,切于两点,切于点,交于.若的周长为,则的值为()A. B. C. D.4.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则5.下列结论正确的是()A.三角形的外心是三条角平分线的交点B.平分弦的直线垂直于弦C.弦的垂直平分线必平分弦所对的两条弧D.直径是圆的对称轴6.一元二次方程3x2﹣x=0的解是()A.x= B.x1=0,x2=3 C.x1=0,x2= D.x=07.下列多边形一定相似的是()A.两个平行四边形 B.两个矩形C.两个菱形 D.两个正方形8.华为手机锁屏密码是6位数,若密码的前4位数字已经知道,则一次解锁该手机密码的概率是()A. B. C. D.9.如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为()A.1 B. C. D.10.某单行道路的路口,只能直行或右转,任意一辆车通过路口时直行或右转的概率相同.有3辆车通过路口.恰好有2辆车直行的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,AB=6,点C在⊙O上,∠CAB=30°,D为的中点,P是直径AB上一动点,则PC+PD的最小值为_____.12.如图,在中,是斜边的垂直平分线,分别交于点,若,则______.13.二次函数的图象与y轴的交点坐标是__.14.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是_____.15.如图,AB为⊙O的直径,CD是弦,且CD⊥AB于点P,若AB=4,OP=1,则弦CD所对的圆周角等于_____度.16.如图,菱形ABCD中,∠B=120°,AB=2,将图中的菱形ABCD绕点A沿逆时针方向旋转,得菱形AB′C′D′1,若∠BAD′=110°,在旋转的过程中,点C经过的路线长为____.17.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.三、解答题(共66分)19.(10分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.20.(6分)(1)解方程:(2)如图,正六边形的边长为2,以点为圆心,长为半径画弧,求弧的长.21.(6分)解方程:(1)2x2+3x﹣1=0(2)22.(8分)甲、乙两人用如图所示的两个转盘(每个转盘分别被分成面积相等的3个扇形)做游戏,游戏规则:甲转动A盘一次,乙转动B盘一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;并求出甲获胜的概率.23.(8分)元旦期间,小黄自驾游去了离家156千米的黄石矿博园,右图是小黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小黄出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)小黄出发1.5小时时,离目的地还有多少千米?24.(8分)如图,△ABC是等边三角形,点D在AC边上,将△BCD绕点C旋转得到△ACE.(1)求证:DE∥BC.(2)若AB=8,BD=7,求△ADE的周长.25.(10分)已知反比例函数y=(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线Cl,将Cl向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.26.(10分)如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.(1)求证:点D为BC的中点;(2)求AP的长度;(3)求证:CP是⊙O的切线.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.2、D【分析】将点的坐标代入反比例函数解析式中可求k的值.【详解】∵反比例函数的图象经过点(﹣5,3),∴k+1=﹣5×3=﹣15,∴k=﹣16故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,掌握图象上的点的坐标满足解析式是本题的关键.3、A【分析】利用切线长定理得出,然后再根据的周长即可求出PA的长.【详解】∵切于两点,切于点,交于∴的周长为∴故选:A.【点睛】本题主要考查切线长定理,掌握切线长定理是解题的关键.4、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.5、C【分析】根据三角形的外心定义可以对A判断;根据垂径定理的推论即可对B判断;根据垂径定理即可对C判断;根据对称轴是直线即可对D判断.【详解】A.三角形的外心是三边垂直平分线的交点,所以A选项错误;B.平分弦(不是直径)的直径垂直于弦,所以B选项错误;C.弦的垂直平分线必平分弦所对的两条弧,所以C选项正确;D.直径所在的直线是圆的对称轴,所以D选项错误.故选:C.【点睛】本题考查了三角形的外接圆与外心、垂径定理、圆的有关概念,解决本题的关键是掌握圆的知识.6、C【解析】根据题意对方程提取公因式x,得到x(
3x-1)=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.【详解】∵3x2﹣x=0,∴x(3x﹣1)=0,∴x=0或3x﹣1=0,∴x1=0,x2=,故选C.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.7、D【分析】利用相似多边形的定义:对应边成比例,对应角相等的两个多边形相似,逐一分析各选项可得答案.【详解】解:两个平行四边形,既不满足对应边成比例,也不满足对应角相等,所以A错误,两个矩形,满足对应角相等,但不满足对应边成比例,所以B错误,两个菱形,满足对应边成比例,但不满足对应角相等,所以C错误,两个正方形,既满足对应边成比例,也满足对应角相等,所以D正确,故选D.【点睛】本题考查的是相似多边形的定义与判定,掌握定义法判定多边形相似是解题的关键.8、C【分析】根据排列组合,求出最后两位数字共存在多少种情况,即可求解一次解锁该手机密码的概率.【详解】根据题意,我们只需解锁后两位密码即可,两位数字的排列有种可能∴一次解锁该手机密码的概率是故答案为:C.【点睛】本题考查了排列组合的问题,掌握排列组合的公式是解题的关键.9、B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案.【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:△ABC、△ABD、△ACD、△BCD,共4个三角形;其中是等腰三角形的有:△ACD、△BCD,共2个;∴能够组成等腰三角形的概率为:;故选:B.【点睛】本题考查了列举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数.10、B【分析】用表示直行、表示右转,画出树状图表示出所有的种等可能的结果,其中恰好有辆车直行占种,然后根据概率公式求解即可.【详解】解:若用表示直行、表示右转,则画树状图如下:∵共有种等可能的结果,其中恰好有辆车直行占种∴(恰好辆车直行).故选:B【点睛】此题考查的是用树状图法求概率.注意树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率等于所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、3【分析】作出D关于AB的对称点D',则PC+PD的最小值就是CD'的长度.在△COD'中根据边角关系即可求解.【详解】作出D关于AB的对称点D',连接OC,OD',CD'.又∵点C在⊙O上,∠CAB=30°,D为的中点,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案为:3.【点睛】本题考查了圆周角定理以及路程的和最小的问题,正确作出辅助线是解答本题的关键.12、2【分析】连接BF,根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,再根据等边对等角的性质求出∠ABF=∠A,然后根据三角形的内角和定理求出∠CBF,再根据三角函数的定义即可求出CF.【详解】如图,连接BF,
∵EF是AB的垂直平分线,
∴AF=BF,
∴,,在△BCF中,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角函数的定义,熟记性质并作出辅助线是解题的关键.13、(0,3)【分析】令x=0即可得到图像与y轴的交点坐标.【详解】当x=0时,y=3,∴图象与y轴的交点坐标是(0,3)故答案为:(0,3).【点睛】此题考查二次函数图像与坐标轴的交点坐标,图像与y轴交点的横坐标等于0,与x轴交点的纵坐标等于0,依此列方程求解即可.14、1:1.【分析】根据D、E、F分别是AB、BC、AC的中点,得出△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【详解】如图,∵D、E、F分别是AB、BC、AC的中点,∴DEAC,DE∥AC,∴△DEF∽△CAB,∴所得到的△DEF与△ABC的周长之比是:1:1.故答案为1:1.【点睛】本题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.15、60或1.【分析】先确定弦CD所对的圆周角∠CBD和∠CAD两个,再利用圆的相关性质及菱形的判定证四边形ODBC是菱形,推出,根据圆内接四边形对角互补即可分别求出和的度数.【详解】如图,连接OC,OD,BC,BD,AC,AD,∵AB为⊙O的直径,AB=4,∴OB=2,又∵OP=1,∴BP=1,∵CD⊥AB,∴CD垂直平分OB,∴CO=CB,DO=DB,又OC=OD,∴OC=CB=DB=OD,∴四边形ODBC是菱形,∴∠COD=∠CBD,∵∠COD=2∠CAD,∴∠CBD=2∠CAD,又∵四边形ADBC是圆内接四边形,∴∠CAD+∠CBD=180°,∴∠CAD=60°,∠CBD=1°,∵弦CD所对的圆周角有∠CAD和∠CBD两个,故答案为:60或1.【点睛】本题考查了圆周角的度数问题,掌握圆的有关性质、菱形的性质以及判定定理是解题的关键.16、π.【分析】连接AC、AC′,作BM⊥AC于M,由菱形的性质得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性质得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧长公式即可得出结果.【详解】解:连接AC、AC′,作BM⊥AC于M,如图所示:∵四边形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴点C经过的路线长==π故答案为:π【点睛】本题考查了菱形的性质、含30°角的直角三角形的性质、等腰三角形的性质、勾股定理、弧长公式;熟练掌握菱形的性质,由勾股定理和等腰三角形的性质求出AC的长是解决问题的关键.17、3.1或4.32或4.2【解析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可.【详解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=•S△ABC=×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=•S△ABC=×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=•S△ABC=×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.18、1【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.考点:一元二次方程的解.三、解答题(共66分)19、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:,∴,即,∴△≌△,∴AC′=BD′,,设BD′与OA相交于点N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.20、(1),;(2)【分析】(1)由因式分解法即可得出答案;
(2)由正六边形的性质和弧长公式即可得出结果.【详解】(1)解:,,,∴,∴,.(2)解:六边形是正六边形,∴∴弧的长为.【点睛】此题考查正多边形和圆,一元二次方程的解,弧长公式,熟练掌握正六边形的性质和一元二次方程的解法是解题的关键.21、(1)x1=,x2=;(2)x=【分析】(1)将方程化为一般形式ax2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,检验:当x=时,(x+2)(x﹣2)≠0,所以x=是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.22、见解析,.【分析】先列表或画出树状图,再根据表格或树状图得出所有可能出现的结果,然后找出结果为偶数的,利用概率公式计算即可.【详解】由题意,列表或树状图表示所有可能如下所示:由此可知,共有9种可能的结果,每一种可能性相同,其中和为偶数的结果有5种所以甲获胜的概率为.【点睛】本题考查了利用列举法求概率,依据题意,正确列出表格或画出树状图是解题关键.23、(1)2千米;(2)y=90x﹣24(0.8≤x≤2);(3)3千米【分析】(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=1.5代入AB段图象的函数表达式,求出对应的y值,再用156减去y即可求解.【详解】解:(1)设OA段图象的函数表达式为y=kx.∵当x=0.8时,y=48,∴0.8k=48,∴k=1.∴y=1x(0≤x≤0.8),∴当x=0.5时,y=1×0.5=2.故小黄出发0.5小时时,离家2千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(0.8,48),B(2,156)在AB上,,解得,∴y=90x﹣24(0.8≤x≤2);(3)∵当x=1.5时,y=90×1.5﹣24=111,∴156﹣111=3.故小黄出发1.5小时时,离目的地还有3千米.【点睛】本题考查了一次函数的应用及一次函数解析式的确定,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,本题较简单.24、(1)见解析;(2)1【分析】(1)由旋转的性质可得CD=CE,∠ACB=∠ACE=60°,可得∠CDE=60°=∠ACB,可证DE∥BC;(2)由旋转的性质可得AE=BD=7,即可求△ADE的周长.【详解】证明:(1)∵△ABC是等边三角形,∴AB=BC=AC,∠ACB=60°,∵将△BCD绕点C旋转得到△ACE.∴CD=CE,∠ACB=∠ACE=60°,∴△CDE是等边三角形,∴∠CDE=60°=∠ACB,∴DE∥BC;(2)∵将△BCD绕点C旋转得到△ACE.∴AE=BD=7,∵△ADE的周长=AE+DE+AD=AE+DC+AD=AE+AC,∴△ADE的周长=7+8=1.【点睛】本题考查了旋转的性质,等边三角形的性质,解决本题的关键是正确理解题意,能够熟练掌握旋转的性质和等边三角形的性质,找到相等的线段和角.25、(2)k=-2;(2)作图见解析;2.【分析】(2)把这两个函数解析式联立,化简可得kx2+4x-4=0,又因y=的图像与直线y=kx+4只有一个公共点,可得△=0,即可求得k值;(2)C2平移至C2处所扫过的面积等于平行四边形C2C2AB的面积,直接求得即可.【详解】Jie:(2)联立得kx2+4x-4=0,又∵y=的图像与直线y=kx+4只有一个公共点,∴42-4∙k∙(—4)=0,∴k=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度铝合金门窗企业品牌战略规划与实施合同4篇
- 专项委托购买合同2024年版本3篇
- 个人提供翻译服务2024年度合同2篇
- 二零二五年度芒果采摘与冷链物流一体化服务合同4篇
- 二零二五版基础设施建设项目劳务分包招标文件2篇
- 山西省(太原临汾地区)重点名校2025届中考一模生物试题含解析
- 2025届江苏省扬州市翠岗中考四模生物试题含解析
- 2025年度数码配件代销合作协议4篇
- 2025年度遗体告别仪式现场布置与用品供应合同2篇
- 二零二五版国际教育交流项目合作协议3篇
- 2023年药品注册专员年度总结及来年计划
- 易普拉格科研管理系统
- 最终版 古城文化修复监理大纲
- GB/T 43391-2023市场、民意和社会调查调查报告编制指南
- 拔罐技术操作考核评分标准
- 软件无线电原理与应用第3版 课件 第4-6章 软件无线电硬件平台设计、软件无线电信号处理算法、信道编译码技术
- RB-T 099-2022 进口食品供应商评价技术规范
- 戒赌法律协议书范本
- (完整版)A4笔记本模板(可编辑修改word版)
- 竞选市级三好学生PPT
- 2024届甘肃省兰州市五十一中生物高一上期末检测模拟试题含解析
评论
0/150
提交评论