版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,将绕点顺时针旋转,得到,且点在上,下列说法错误的是()A.平分 B. C. D.2.如图,和都是等腰直角三角形,,,的顶点在的斜边上,、交于,若,,则的长为()A. B. C. D.3.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.4.已知,则=()A. B. C. D.5.如图1,E为矩形ABCD边AD上一点,点P从点C沿折线CD﹣DE﹣EB运动到点B时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=8cmB.sin∠EBC=C.当10≤t≤12时,D.当t=12s时,△PBQ是等腰三角形6.用相同的小立方块搭成的几何体的三种视图都相同(如图所示),则搭成该几何体的小立方块个数是()A.3个 B.4个 C.5个 D.6个7.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60° B.45° C.15° D.90°8.在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)9.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65 B.65 C.2 D.10.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.12.因式分解x3-9x=__________.13.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.14.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.15.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.16.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)17.二次函数的最大值是__________.18.如图,等边△ABO的边长为2,点B在x轴上,反比例函数图象经过点A,将△ABO绕点O顺时针旋转a(0°<a<360°),使点A仍落在双曲线上,则a=_____.三、解答题(共66分)19.(10分)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元.(1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款;(2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.20.(6分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.21.(6分)在平面直角坐标系中,已知抛物线y1=x2﹣4x+4的顶点为A,直线y2=kx﹣2k(k≠0),(1)试说明直线是否经过抛物线顶点A;(2)若直线y2交抛物线于点B,且△OAB面积为1时,求B点坐标;(1)过x轴上的一点M(t,0)(0≤t≤2),作x轴的垂线,分别交y1,y2的图象于点P,Q,判断下列说法是否正确,并说明理由:①当k>0时,存在实数t(0≤t≤2)使得PQ=1.②当﹣2<k<﹣0.5时,不存在满足条件的t(0≤t≤2)使得PQ=1.22.(8分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?23.(8分)如图是一个横断面为抛物线形状的拱桥,当水面宽(AB)为4m时,拱顶(拱桥洞的最高点)离水面2m.当水面下降1m时,求水面的宽度增加了多少?24.(8分)如图,抛物线过点和,点为线段上一个动点(点与点不重合),过点作垂直于轴的直线与直线和抛物线分别交于点.(1)求此抛物线的解析式;(2)若点是的中点,则求点的坐标;(3)若以点为顶点的三角形与相似,请直接写出点的坐标.25.(10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?26.(10分)如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由题意根据旋转变换的性质,进行依次分析即可判断.【详解】解:解:∵△ABC绕点A顺时针旋转,旋转角是∠BAC,∴AB的对应边为AD,BC的对应边为DE,∠BAC对应角为∠DAE,∴AB=AD,DE=BC,∠BAC=∠DAE即平分,∴A,B,D选项正确,C选项不正确.故选:C.【点睛】本题考查旋转的性质,旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.2、B【分析】连接BD,自F点分别作,交AD、BD于G、H点,通过证明,可得,根据勾股定理求出AB的长度,再根据角平分线的性质可得,根据三角形面积公式可得,代入中即可求出BF的值.【详解】如图,连接BD,自F点分别作,交AD、BD于G、H点∵和都是等腰直角三角形∴在△ECA和△DCB中在Rt△ADB中,∴DF是∠ADB的角平分线∵△ADF底边AF上的高h与△BDF底边BF上的高h相同故答案为:B.【点睛】本题考查了三角形的综合问题,掌握等腰直角三角形的性质、全等三角形的性质以及判定定理、勾股定理、角平分线的性质、三角形面积公式是解题的关键.3、D【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.4、B【分析】由得到x=,再代入计算即可.【详解】∵,∴x=,∴=.故选B.【点睛】考查了求代数式的值,解题关键是根据得到x=,再代入计算即可.5、D【分析】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,然后结合三角函数、三角形的面积等逐一进行判断即可得.【详解】观察图象可知:点P在CD上运动的时间为6s,在DE上运动的时间为4s,点Q在BC上运动的时间为12s,所以CD=6,DE=4,BC=12,∵AD=BC,∴AD=12,∴AE=12﹣4=8cm,故A正确,在Rt△ABE中,∵AE=8,AB=CD=6,∴BE==10,∴sin∠EBC=sin∠AEB=,故B正确,当10≤t≤12时,点P在BE上,BP=10﹣(t﹣10)=20﹣t,∴S△BQP=•t•(20﹣t)•=﹣t2+6t,故C正确,如图,当t=12时,Q点与C点重合,点P在BE上,此时BP=20-12=8,过点P作PM⊥BC于M,在Rt△BPM中,cos∠PBM=,又∠PBM=∠AEB,在Rt△ABE中,cos∠AEB=,∴,∴BM=6.4,∴QM=12-6.4=5.6,∴BP≠PC,即△PBQ不是等腰三角形,故D错误,故选D.【点睛】本题考查动点问题的函数图象,涉及了矩形的性质,勾股定理,三角形函数,等腰三角形的判定等知识,综合性较强,解题的关键是理解题意,读懂图象信息,灵活运用所学知识解决问题.6、B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】依题意可得所以需要4块;故选:B【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7、C【解析】试题解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C.考点:解直角三角形的应用.8、D【解析】解:点M(1,﹣2)与点N关于原点对称,点N的坐标为故选D.【点睛】本题考查关于原点对称的点坐标特征:横坐标和纵坐标都互为相反数.9、C【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可.【详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1,∴样本方差为故选:C.【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键10、D【详解】由题意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°−∠DCA)÷2=(180°−30°)÷2=75°.故选D.【点睛】本题主要考查了旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.二、填空题(每小题3分,共24分)11、3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,=0.3,解得m=3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.12、x(x+3)(x-3)【分析】先提取公因式x,再利用平方差公式进行分解.【详解】解:x3-9x,=x(x2-9),=x(x+3)(x-3).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.13、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴14、60°.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.15、或【分析】即直线位于双曲线下方部分,根据图象即可得到答案.【详解】解:即直线位于双曲线下方部分,根据图象可知此时或.【点睛】本题考查了一次函数和反比例函数的图象和性质,用图解法解不等式.16、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.17、1【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值1.故答案为1.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.18、30°或180°或210°【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴a=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时a=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时a=210°;故答案为:30°或180°或210°.考点:(1)、反比例函数图象上点的坐标特征;(2)、等边三角形的性质;(3)、坐标与图形变化-旋转.三、解答题(共66分)19、(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗.【分析】(1)由题意按照每棵120元进行计算;(2)设设购买了棵树苗,根据单价×数量=总价列方程,求解.【详解】解:(1)∵,∴(元),∴答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为元元,∴该中学购买的树苗超过60棵.又∵,∴购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元,此时所需支付的树苗款超过10000元,而,∴该中学购买的树苗不超过100棵.设购买了棵树苗,依题意,得,化简,得,解得(舍去),.答:这所中学购买了80棵树苗.【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.20、(1)见解析;(2)见解析;(3)8米【解析】【试题分析】(1)点B在地面上的投影为M.故连接MB,并延长交OP于点P.点P即为所求;(2)连接PD,并延长交OM于点N.CN即为所求;(3)根据相似三角形的性质,易得:,即,解得.从而得求.【试题解析】如图:如图:,∽,,即,解得.即路灯灯泡P到地面的距离是8米.
【方法点睛】本题目是一道关于中心投影的问题,涉及到如何确定点光源,相似三角形的判定,相似三角形的性质,难度中等.21、(1)直线经过A点;(2)B(1,1)或B(1,1);(1)①正确,②正确.【解析】(1)将抛物线解析式整理成顶点式形式,然后写出顶点A的坐标,将点A的坐标代入直线的解析式判断即可;(2)OA=2,△OAB面积为1时,根据三角形的面积公式,求出点B的纵坐标,代入抛物线的解析式即可求出点B的横坐标,即可求解.
(1)①点M(t,0),则点P(t,t2﹣4t+4),点Q(t,kt﹣2k),若k>0:当0≤t≤2时,P在Q点上方时,t2-4t+4-kt-2k=3,整理得t2﹣(4+k)t+(1+2k)=0,求出△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,②分当P在Q点下方,当P在Q点上方时,两种情况进行分类讨论.【详解】(1)y1顶点A(2,0)当x=2时,由2k-2k=0,∴直线经过A点.(2)OA=2,△OAB面积为1时,S△OAByB令y解得:x1即点B的坐标为:B(1,1)或B(1,1),(1)∵点M(t,0),∴点P(t,t2﹣4t+4),点Q(t,kt﹣2k),①若k>0:当0≤t≤2时,P在Q点上方时,∵PQ=1∴t2﹣(4+k)t+(4+2k)=1整理得t2﹣(4+k)t+(1+2k)=0∵△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解∴①正确.②若k<0:1)当P在Q点下方,∴t2﹣(4+k)t+(4+2k)=﹣1∴t2﹣(4+k)t+7+2k=0∵△=b2﹣4ac=(4+k)2﹣4(7+2k)=k2﹣12∴当存在PQ=1时,k2﹣12≥0∴k≤-23或k≥2∴当﹣2<k<﹣0.5时,不存在满足条件的t,2)当P在Q点上方时,∴t2﹣(4+k)t+(4+2k)=1∵△=k2+12>0,此方程有解又∵t1+t1∴正根>2∴在[0,2]上不存在满足条件的t,∴②正确-【点睛】属于二次函数综合题,考查二次函数图象上点的坐标特征,三角形的面积公式,一元二次方程根的判别式等,综合性比较强,难度较大.22、(1)详见解析;(2)1;(3)10【分析】(1)成绩一般的学生占的百分比=1﹣成绩优秀的百分比﹣成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数,然后补全图形即可.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、水面宽度增加了(2﹣4)米【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,代入A点坐标(﹣2,0),得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加了(2﹣4)米.【点睛】此题考查的是二次函数的应用,建立适当的坐标系,利用待定系数法求二次函数的解析式是解决此题的关键.24、(1);(2);(3)P(,)或P(,)【分析】(1)把A点坐标和B点坐标代入,解方程组即可;
(2)用m可表示出P、N的坐标,由题意可知有P为线段MN的中点,可得到关于m的方程,可求得m的值,即可求得点的坐标;(3)用m可表示出NP,PM,AM,分当∠BNP=90°时和当∠NBP=90°时两种情况讨论即可.【详解】解:(1)抛物线经过点解得∴(2)由题意易得,直线的解析式为由,设,则,点是的中点,即∴,解得(舍)∴(3).由,设,∴,,AM=3−m,
∵△BPN和△APM相似,且∠BPN=∠APM,
∴∠BN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学折纸社团活动方案
- 二次供水清洗消毒合同
- 土石方开挖、爆破专项施工方案
- 年度个人工作总结
- 2023年怀化中方县事业单位招聘(含医疗岗位)考试真题
- 2023年桂林资源县招聘县级公立医院聘用笔试真题
- 中小学教师教学述评制度
- 2024年社会主义核心价值观活动方案
- 幼儿园一岗双责工作制度
- 游泳池安全管理规章制度
- PDT集群无线技术规范培训计划
- (高清版)TDT 1047-2016 土地整治重大项目实施方案编制规程
- 2023年10月自考00155中级财务会计试题及答案含评分标准
- 自然教育行业的行业分析
- 探析机械电子工程行业现状分析及未来发展趋势
- 机电一体化生涯发展报告
- 科学精神青少年的科学思维认知
- 2024年浙江高压电工证考试题库app高压电工复审模拟考试题库(全国通用)
- 丰田汽车组织架构图课件
- 老年人中医药养生健康知识讲座
- 物业保盘行动策划方案
评论
0/150
提交评论