版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省石狮市自然门学校2025届九上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.2.4 C.4.8 D.52.小明使用电脑软件探究函数的图象,他输入了一组,的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的,的值满足()A., B., C., D.,3.在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A.3 B.6 C.7 D.144.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.5.如图,线段OA=2,且OA与x轴的夹角为45°,将点A绕坐标原点O逆时针旋转105°后得到点,则的坐标为()A. B. C. D.6.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>37.表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c=0的一个根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.388.关于反比例函数y=﹣的图象,下列说法正确的是()A.经过点(﹣1,﹣4)B.图象是轴对称图形,但不是中心对称图形C.无论x取何值时,y随x的增大而增大D.点(,﹣8)在该函数的图象上9.已知x=-1是方程2x2+ax-5=0的一个根,则a的值为()A.-3 B.-4 C.3 D.710.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠BCA=45°,则点O到弦AB的距离为()A.3 B.6 C.3 D.611.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.12.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是()A.5 B.4 C.3 D.0二、填空题(每题4分,共24分)13.如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,则△PAB的周长为_____.14.在Rt△ABC中,∠C=90°,若sinA=,则cosB=_____.15.已知点和关于原点对称,则a+b=____.16.已知反比例函数的图象经过点,则这个函数的表达式为__________.17.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.18.某班级中有男生和女生各若干,如果随机抽取1人,抽到男生的概率是,那么抽到女生的概率是_____.三、解答题(共78分)19.(8分)(1)解方程:;(2)图①②均为7×6的正方形网络,点A,B,C在格点上;(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可);(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可).20.(8分)如图,在平面直角坐标系中,直线与直线,交点的横坐标为,将直线,沿轴向下平移个单位长度,得到直线,直线,与轴交于点,与直线,交于点,点的纵坐标为,直线;与轴交于点.(1)求直线的解析式;(2)求的面积21.(8分)如图,已知抛物线与轴相交于、两点,与轴相交于点,若已知点的坐标为.(1)求抛物线的解析式;(2)求线段所在直线的解析式;(3)在抛物线的对称轴上是否存在点,使为等腰三角形?若存在,求出符合条件的点坐标;若不存在,请说明理由.22.(10分)如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.23.(10分)教练想从甲、乙两名运动员中选拔一人参加射击锦标赛,故先在射击队举行了一场选拔比赛.在相同的条件下各射靶次,每次射靶的成绩情况如图所示.甲射靶成绩的条形统计图乙射靶成绩的折线统计图()请你根据图中的数据填写下表:平均数众数方差甲__________乙____________________()根据选拔赛结果,教练选择了甲运动员参加射击锦标赛,请给出解释.24.(10分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)(1)售价为多少时可以使每天的利润最大?最大利润是多少?(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?25.(12分)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?26.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减小的自变量x的取值范围.
参考答案一、选择题(每题4分,共48分)1、C【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面积是∴BC⋅AE=24,故选C.2、D【分析】由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;【详解】由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;故选:D.【点睛】本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.3、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率.4、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.5、C【分析】如图所示,过作⊥y轴于点B,作⊥x轴于点C,根据旋转的性质得出,,从而得出,利用锐角三角函数解出CO与OB即可解答.【详解】解:如图所示,过作⊥y轴于点B,作⊥x轴于点C,由旋转可知,,,∵AO与x轴的夹角为45°,∴∠AOB=45°,∴,∴,,∴,故选:C.【点睛】本题考查了旋转的性质以及解直角三角形,解题的关键是得出,并熟悉锐角三角函数的定义及应用.6、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.7、B【分析】观察表中数据得到抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),然后根据抛物线与x轴的交点问题可得到方程ax2+bx+c=0一个根的近似值.【详解】∵x=1.1时,y=ax2+bx+c=﹣0.49;x=1.2时,y=ax2+bx+c=0.04;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),∴方程ax2+bx+c=0有一个根约为1.1.故选:B.【点睛】本题主要考查抛物线与x轴的交点问题,掌握二次函数的图象与x轴的交点的横坐标与一元二次方程的根的关系,是解题的关键.8、D【分析】反比例函数的图象时位于第一、三象限,在每个象限内,y随x的增大而减小;时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.【详解】∵当时,∴点(,﹣8)在该函数的图象上正确,故A、B、C错误,不符合题意.故选:D.【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.9、A【解析】把x=-1代入方程计算即可求出a的值.【详解】解:把x=-1代入方程得:2-a-5=0,
解得:a=-1.
故选A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、C【分析】连接OA、OB,作OD⊥AB于点D,则△OAB是等腰直角三角形,得到ODAB,即可得出结论.【详解】连接OA、OB,作OD⊥AB于点D.∵△OAB中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB.又∵OD⊥AB于点D,∴ODAB=.故选C.【点睛】本题考查了圆周角定理,得到△OAB是等腰直角三角形是解答本题的关键.11、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.12、C【分析】本题通过做辅助线构造新三角形,继而利用等边三角形性质求证四边形HFPE为平行四边形,进一步结合点G中点性质确定点G运动路径为△HCD中位线,最后利用中位线性质求解.【详解】延长AE与BF使其相交于点H,连接HC、HD、HP,如下图所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四边形HFPE为平行四边形,∴EF与PH互相平分,又∵点G为EF中点,∴点G为PH中点,即在点P运动过程中,点G始终为PH的中点,故点G的运动轨迹为△HCD的中位线MN.∵,,∴,∴,即点G的移动路径长为1.故选:C.【点睛】本题考查等边三角形性质以及动点问题,此类型题目难点在于辅助线的构造,需要多做类似题目积累题感,涉及动点运动轨迹时,其路径通常是较为特殊的线段或图形,例如中位线或圆.二、填空题(每题4分,共24分)13、【解析】根据圆周角定理的推论及切线长定理,即可得出答案解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠ACB=60°,∴∠BAC=30°,∴CB=1,AB=,∵AP为切线,∴∠CAP=90°,∴∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴△PAB的周长为3.点睛:本题主要考查圆周角定理及切线长定理.熟记圆的相关性质是解题的关键.14、.【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=,得cosB=sinA=,故答案为.【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键.15、【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得a-1+2=0,b-1+1=0,再解方程即可求得a、b的值,再代入计算即可.【详解】∵点和关于原点对称,∴a-1+2=0,b-1+1=0,∴a=-1,b=0,∴a+b=-1.故答案是:-1.【点睛】考查了关于原点对称的点的坐标特点,解题关键是运用了两个点关于原点对称时,它们的坐标符号相反.16、【分析】把点的坐标代入根据待定系数法即可得解.【详解】解:∵反比例函数y=经过点M(-3,2),
∴2=,
解得k=-6,
所以,反比例函数表达式为y=.
故答案为:y=.【点睛】本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.17、⊙O上或⊙O内【分析】直接利用反证法的基本步骤得出答案.【详解】解:用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,
首先应假设:若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O上或⊙O内.
故答案为:在⊙O上或⊙O内.【点睛】此题主要考查了反证法,正确掌握反证法的解题方法是解题关键.18、【分析】由于抽到男生的概率与抽到女生的概率之和为1,据此即可求出抽到女生的概率.【详解】解:∵抽到男生的概率是,∴抽到女生的概率是1-=.故答案为:.【点睛】此题考查的是求概率问题,掌握抽到男生和抽到女生的概率之和等于1是解决此题的关键.三、解答题(共78分)19、(1)x=4.5;(2)(a)见解析;(b)见解析【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【详解】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;经检验,x=4.5是原方程的解;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为中心对称图形;.【点睛】此题主要考查分式方程及方格的作图,解题的关键是熟知分式方程的解法及轴对称图形与中心对称图形的特点.20、(1)y=﹣x+4;(2)1【分析】(1)把x=2代入y=x,得y=1,求出A(2,1).根据平移规律得出直线l3的解析式为y=x﹣4,求出B(0,﹣4)、C(4,﹣2).设直线l2的解析式为y=kx+b,将A、C两点的坐标代入,利用待定系数法即可求出直线l2的解析式;(2)根据直线l2的解析式求出D(0,4),得出BD=8,再利用三角形的面积公式即可求出△BDC的面积.【详解】解:如图:(1)把x=2代入y=x,得y=1,∴A的坐标为(2,1).∵将直线l1沿y轴向下平移4个单位长度,得到直线l3,∴直线l3的解析式为y=x﹣4,∴x=0时,y=﹣4,∴B(0,﹣4).将y=﹣2代入y=x﹣4,得x=4,∴点C的坐标为(4,﹣2).设直线l2的解析式为y=kx+b,∵直线l2过A(2,1)、C(4,﹣2),∴,解得,∴直线l2的解析式为y=﹣x+4;(2)∵y=﹣x+4,∴x=0时,y=4,∴D(0,4).∵B(0,﹣4),∴BD=8,∴△BDC的面积=×8×4=1.【点睛】本题考查了一次函数图象与几何变换,待定系数法求直线的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求出求出直线l2的解析式是解题的关键.21、(1);(2);(3)存在,(2,2)或(2,-2)或(2,0)或(2,)【分析】(1)将A点代入抛物线的解析式即可求得答案;(2)先求得点B、点C的坐标,利用待定系数法即可求得直线BC的解析式;(3)设出P点坐标,然后表示出△ACP的三边长度,分三种情况计论,根据腰相等建立方程,求解即可.【详解】(1)将点代入中,得:,解得:,∴抛物线的解析式为;(2)当时,,∴点C的坐标为(0,4),当时,,解得:,∴点B的坐标为(6,0),设直线BC的解析式为,将点B(6,0),点C(0,4)代入,得:,∴,∴直线BC的解析式为,(3)抛物线的对称轴为,假设存在点P,设,则,,,∵△ACP为等腰三角形,①当时,,解之得:,∴点P的坐标为(2,2)或(2,-2);②当时,,解之得:或(舍去),∴点P的坐标为(2,0)或(2,8),设直线AC的解析式为,将点A(-2,0)、C(0,4)代入得,解得:,∴直线AC的解析式为,当时,,∴点(2,8)在直线AC上,∴A、C、P在同一直线上,点(2,8)应舍去;③当时,,解之得:,∴点P的坐标为(2,);综上,符合条件的点P存在,坐标为:(2,2)或(2,-2)或(2,0)或(2,).【点睛】本题为二次函数的综合应用,涉及待定系数法求二次函数解析式,待定系数法求一次函数解析式,二次函数的性质,方程思想及分类讨论思想等知识点.在(3)中利用点P的坐标分别表示出AP、CP的长是解题的关键.22、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)先证明四边形EFGH是平行四边形,再证明有一组邻边相等,然后结合∠EFG=90°,即可证得该平行四边形是正方形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH(SAS),∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四边形HEFG为平行四边形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴平行四边形EFGH是菱形.又∵∠EFG=90°,∴平行四边形EFGH是正方形.【点睛】本题主要考查了四边形的综合性问题,关键要注意正方形和菱形的性质定理,结合考虑三角形的全等的证明,这是中考的必考点,必须熟练掌握.23、(1)【答题空1】66(2)利用见解析.【分析】(1)先求出甲射击成绩的平均数,通过观察可得到乙的众数,再根据乙的平均数结合方差公式求出乙射击成绩的方差即可;(2)根据平均数和方差的意义,即可得出结果.【详解】解:(),乙的众数为6,.()因为甲、乙的平均数与众数都相同,甲的方差小,所以更稳定,因此甲的成绩好些.【点睛】本题考查了平均数、众数、方差的意义等,解题的关键是要熟记公式,在进行选拔时要结合方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24、(1)每瓶竹叶青酒售价为元时,利润最大,最大利润为元;(2)要使每天利润不低于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学品安全与公共卫生管理研究考核试卷
- 服装行业中的供应商关系管理考核试卷
- 印刷电商平台的发展与应用考核试卷
- 焙烤食品制造市场趋势预测分析考核试卷
- 新媒体时代对服饰品牌传播的影响考核试卷
- 疾病预防与控制管理信息系统
- 玻璃纤维增强塑料模具制造技术研究考核试卷
- 广播电视接收设备的环保要求考核试卷
- 焙烤食品市场营销策略分析考核试卷
- 建筑装饰与室内设计的造型设计考核试卷
- (2024)辅警招聘公安基础知识考试题库及答案
- 夸美纽斯完整版本
- 社会主义发展史智慧树知到期末考试答案2024年
- 医院管理案例分享:住院患者人工气道同质化管理持续改进
- 项目设计招标实施工作方案
- 2024年护坡施工合同范本
- 糖尿病酮症酸中毒的诊断和治疗
- GB/T 19812.7-2024塑料节水灌溉器材第7部分:微灌用塑料阀门
- 乡镇社会稳定风险评估报告
- 2023年高考物理(江苏卷)真题详细解读及评析
- 应用研究型人才培养方案设计
评论
0/150
提交评论