版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市香洲区前山中学2025届九年级数学第一学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,正方形ABCD中,点EF分别在BC、CD上,△AEF是等边三角形,连AC交EF于G,下列结论:①∠BAE=∠DAF=15°;②AG=GC;③BE+DF=EF;④S△CEF=2S△ABE,其中正确的个数为()A.1 B.2 C.3 D.42.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC3.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=34.如图,内接于圆,,,若,则弧的长为()A. B. C. D.5.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50° B.65° C.100° D.130°6.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是()A.5 B.4 C.3 D.07.在Rt△ABC中,∠C=900,∠B=2∠A,则cosB等于()A. B. C. D.8.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.109.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)之间的关系为s=8t+2t2,若滑到坡底的时间为4s,则此人下降的高度为()A.16m B.32m C.32m D.64m10.硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是()A.正面向上 B.正面不向上 C.正面或反面向上 D.正面和反面都不向上二、填空题(每小题3分,共24分)11.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.12.如图,在四边形ABCD中,AD∥BC,AD=2,AB=,以点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,则弧DF的长为_________.13.一个不透明的布袋里装有2个红球,4个白球和a个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是黄球的概率为0.4,则a=_____.14.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.15.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.16.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.17.一圆锥的侧面积为,底面半径为3,则该圆锥的母线长为________.18.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.三、解答题(共66分)19.(10分)某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图所示的统计图,根据统计图提供的信息解决下面问题:(1)柑橘损坏的概率估计值为;估计这批柑橘完好的质量为千克.(2)若希望这批柑橘能够获得利润5000元,那么在出售柑橘(只卖好果)时,每千克大约定价为多少元比较合适?(精确到0.1)20.(6分)(1)解方程:(2)如图,四边形是的内接四边形,若,求的度数.21.(6分)为争创文明城市,我市交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,并将两次收集的数据制成如下统计图表.类别人数百分比A686.8%B245b%Ca51%D17717.7%总计c100%根据以上提供的信息解决下列问题:(1)a=,b=c=(2)若我市约有30万人使用电瓶车,请分别计算活动前和活动后全市骑电瓶车“都不戴”安全帽的人数.(3)经过某十字路口,汽车无法继续直行只可左转或右转,电动车不受限制,现有一辆汽车和一辆电动车同时到达该路口,用画树状图或列表的方法求汽车和电动车都向左转的概率.22.(8分)如图,已知矩形的边,,点、分别是、边上的动点.(1)连接、,以为直径的交于点.①若点恰好是的中点,则与的数量关系是______;②若,求的长;(2)已知,,是以为弦的圆.①若圆心恰好在边的延长线上,求的半径:②若与矩形的一边相切,求的半径.23.(8分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.24.(8分)已知与成反比例,当时,,求与的函数表达式.25.(10分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.(1)如图①,点恰好在上,求证:∽;(2)如图②,点在矩形内,连接,若,求的面积;(3)若以点、、为顶点的三角形是直角三角形,则的长为.26.(10分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C作CF平行于BA交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.(3)若AD=3,AE=5,则菱形AECF的面积是多少?
参考答案一、选择题(每小题3分,共30分)1、C【解析】通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论.【详解】①∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵△AEF等边三角形,∴AE=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∴AC是EF的垂直平分线,∴AC平分∠EAF,∴∠EAC=∠FAC=×60°=30°,∵∠BAC=∠DAC=45°,∴∠BAE=∠DAF=15°,故①正确;②设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60°=EFsin60°=2×CGsin60°=2×CG,∴AG=CG,故②正确;③由②知:设EC=x,EF=x,AC=CG+AG=CG+CG=,∴AB==,∴BE=AB﹣CE=﹣x=,∴BE+DF=2×=(﹣1)x≠x,故③错误;④S△CEF=,S△ABE=BE•AB=,∴S△CEF=2S△ABE,故④正确,所以本题正确的个数有3个,分别是①②④,故选C.【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.2、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EP⊥AC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.3、D【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故选:D.【点睛】本题主要考查一元二次方程的解法,掌握因式分解法解方程,是解题的关键.4、A【分析】连接OB,OC.首先证明△OBC是等腰直角三角形,求出OB即可解决问题.【详解】连接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选A.【点睛】本题考查圆周角定理,弧长公式,等腰直角三角形的性质的等知识,解题的关键是熟练掌握基本知识5、C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC,
∵∠ABC=65°,
∴∠ACB=65°,
∴∠A=50°,
∴∠BOC=100°,
故选:C.【点睛】本题考查圆心角、弧、弦的关系.6、C【分析】本题通过做辅助线构造新三角形,继而利用等边三角形性质求证四边形HFPE为平行四边形,进一步结合点G中点性质确定点G运动路径为△HCD中位线,最后利用中位线性质求解.【详解】延长AE与BF使其相交于点H,连接HC、HD、HP,如下图所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四边形HFPE为平行四边形,∴EF与PH互相平分,又∵点G为EF中点,∴点G为PH中点,即在点P运动过程中,点G始终为PH的中点,故点G的运动轨迹为△HCD的中位线MN.∵,,∴,∴,即点G的移动路径长为1.故选:C.【点睛】本题考查等边三角形性质以及动点问题,此类型题目难点在于辅助线的构造,需要多做类似题目积累题感,涉及动点运动轨迹时,其路径通常是较为特殊的线段或图形,例如中位线或圆.7、B【详解】解:∵∠C=90°,∴∠A+∠B=90°,∵∠B=2∠A,∴∠A+2∠A=90°,∴∠A=30°,∴∠B=60°,∴cosB=故选B【点睛】本题考查三角函数值,熟记特殊角三角函数值是解题关键.8、D【解析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.9、B【分析】根据时间,算出斜坡的长度,再根据坡比和三角函数的关系,算出人的下降高度即可.【详解】设斜坡的坡角为α,当t=4时,s=8×4+2×42=64,∵斜坡的坡比1:,∴tanα=,∴α=30°,∴此人下降的高度=×64=32,故选:B.【点睛】本题考查坡比和三角函数中正切的关系,属基础题.10、C【分析】根据概率公式分别求出各选项事件的概率,即可判断.【详解】解:若不考虑硬币竖起的情况,A.正面向上概率为1÷2=;B.正面不向上的概率为1÷2=;C.正面或反面向上的概率为2÷2=1;D.正面和反面都不向上的概率为0÷2=0∵1>>0∴正面或反面向上的概率最大故选C.【点睛】此题考查的是比较几个事件发生的可能性的大小,掌握概率公式是解决此题的关键.二、填空题(每小题3分,共24分)11、1【分析】设袋子中的红球有x个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x个,根据题意,得:=0.7,解得:x=1,经检验:x=1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.12、【解析】分析:连接AE,根据圆的切线的性质可得AD⊥BC,解Rt△ABE可求出∠ABE,进而得到∠DAB,然后运用弧长的计算公式即可得出答案.详解:连接AE,∵BC为圆A的切线,∴AE⊥BC,∴△ABE为直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE为等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的长=π.点睛:本题主要考查的是圆的切线的性质以及弧长的计算公式,属于中等难度题型.得出∠BAD的度数是解题的关键.13、1【解析】根据黄球个数÷总球的个数=黄球的概率,列出算式,求出a的值即可.【详解】根据题意得:=0.1,解得:a=1,经检验,a=1是原分式方程的解,则a=1;故答案为1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.15、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.16、2【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=,∵b和m都是正整数,∴m的最小值为1.∴a=5m=2.故答案为:2.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.17、2【分析】圆锥的侧面积=底面周长×母线长÷1.【详解】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=×6πx=12π.解得:x=2,故答案为2.18、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.三、解答题(共66分)19、(1)0.1,1;(2)4.78元.【分析】(1)根据图形即可得出柑橘损坏的概率,再求出柑橘完好的概率,用柑橘完好的概率乘以这批柑橘的总质量可得出这批柑橘完好的质量;(2)先设出每千克柑橘大约定价为x元比较合适,根据题意列出方程即可求出答案.【详解】(1)根据所给的图可得:柑橘损坏的概率估计值为:0.1,柑橘完好的概率估计值为1-0.1=0.9;这批柑橘完好的质量为:10000×0.9=1(千克),故答案为:0.1,1.(2)设每千克柑橘大约定价为x元比较合适,根据题意得:(x-2)×1=25000,解得:x≈4.78答:每千克柑橘大约定价为4.78元比较合适.【点睛】此题考查了利用频率估计概率,解题的关键是在图中得到必要的信息,求出柑橘损坏的概率;用到的知识点为:频率=所求情况数与总情况数之比.20、(1);(2)136°【分析】(1)提出公因式(x-2),将方程转化为两个因式的积等于零的形式,即可得出两个一元一次方程,再求解即可;(2)先根据同弧所对的圆周角是圆心角的一半求出∠BAD,然后根据圆内接四边形的对角互补即可求出∠BCD.【详解】(1)解:,,∴或,解得:;(2)解:∵,∴,∵,∴,即的度数是136°.【点睛】本题考查了因式分解法解一元二次方程和圆周角定理、圆内接四边形的性质,正确的将方程转化为两个因式的积等于零的形式是解决(1)的关键;熟记圆周角定理和圆内接四边形的性质是解决(2)的关键.21、(1)10,24.5,1000;(2)活动前5.31万人,活动后2.67万人;(3)p=【分析】(1)用表格中的A组的人数除以其百分比,得到总人数c,运用“百分比=人数÷总人数”及其变形公式即可求出a、b的值;(2)先把活动后各组人数相加,求出活动后调查的样本容量,再运用“百分比=人数÷总人数”求出活动前和活动后全市骑电瓶车“都不戴”安全帽的百分比,再用样本估计总体;(3)先画树状图展示所有6种等可能的结果数,再求汽车和电动车都向左转的概率.【详解】(1)∵,∴,,∴;(2)∵活动后调查了896+702+224+178=2000人,“都不戴”安全帽的占,∴由此估计活动后全市骑电瓶车“都不戴”安全帽的总人数:30万=2.67(万人);同理:估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万万人;答:估计活动前和活动后全市骑电瓶车“都不戴”安全帽的总人数分别为5.31万人和2.67万人;(3)画树状图:∴共有6种等可能的结果数,汽车和电动车都向左转的只有1种,∴汽车和电动车都向左转的概率为.【点睛】本题综合考查了概率统计内容,读懂统计图,了解用样本估计总体,掌握概率公式是解决问题的关键.22、(1)①;②1.5;(2)①5;②、,、5.【解析】(1)①根据直径所对的圆周角是直角判断△APQ为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ∽△QBA,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分与矩形的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ是直径,E在圆上,∴∠PEQ=90°,∴PE⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴,∴,∴BP=1.5;(2)①如图,BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴的半径是5.②如图,与矩形的一边相切有4种情况,如图1,当与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=,∴半径为.如图2,当与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,,解得(舍去),,∴ON=,∴半径为.如图3,当与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y,则OM=OP=OQ=4-1-y=3-y,由勾股定理得,,解得(舍去),,∴OM=,∴半径为.如图4,当与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴半径为5.综上所述,若与矩形的一边相切,为的半径,,,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.23、(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.(2)根据中位线定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可得△DEF∽△D'E'F'.【详解】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即为所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴;(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴△DEF∽△CAB,同理:△D'E'F'∽△C'A'B',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.24、【分析】根据反比例的定义,设,再将代入求出k,即可求得.【详解】由题意设,将代入得,解得,∴即.【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,与的函数表达式指的是形式,如本题最后结果不可写成.25、(1)见解析;(2)的面积为;(3)、5、1、【分析】(1)先说明∠CEF=∠AFB和,即可证明∽;(2)过点作交与点,交于点,则;再结合矩形的性质,证得△FGE∽△AHF,得到AH=5GF;然后运用勾股定理求得GF的长,最后运用三角形的面积公式解答即可;(3)分点E在线段CD上和DC的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形中,∴由折叠可得∵∴∴在和中∵,∴∽(2)解:过点作交与点,交于点,则∵矩形中,∴由折叠可得:,,∵∴∴在和中∵∴∽∴∴∴在中,∵∴∴∴的面积为(3)设DE=x,以点E、F、C为顶点的三角形是直角三角形,则:①当点E在线段CD上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=,由折叠可知知,EF=DE=x,AF=AD=5,∴CF=AC-AF=-5,在Rt△ECF中,EF2+CF2=CE2,∴x2+(-5)2=(3-x)2,解得x=即:DE=b,当∠ECF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024丙丁之间关于共同经营连锁餐饮店的合同
- 2024年工装项目材料与设备采购合同
- 2024区块链应用开发与授权合同
- 2024年制造业成品库管理及配送服务合同
- 学生体质健康管理制度
- 2024年工程建筑施工协议书
- 2024年工程保险服务施工合同
- 2024年学校师资聘请协议标准版
- 2024年家庭家政服务人员雇佣合同
- 2024城市宣传片拍摄基地租赁协议
- 农村自建房接受赠与协议书范文
- 2023年温州瑞安农商银行招聘考试真题
- 2023-2024学年江西省萍乡市八年级(上)期末物理试卷
- 2024年广东省第一次普通高中学业水平合格性考试历史试卷(解析版)
- 工程项目建设程序及审批部门
- 融媒体综艺节目制作学习通超星期末考试答案章节答案2024年
- 2024年中国融通集团子公司中层管理人员社会招聘高频难、易错点500题模拟试题附带答案详解
- 机房网络设备整体搬迁实施项目解决方案
- 军事理论(上海财经大学版)学习通超星期末考试答案章节答案2024年
- 农耕营地教育课程设计
- 期中 (试题) -2024-2025学年译林版(三起)(2024)英语三年级上册
评论
0/150
提交评论