2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题含解析_第1页
2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题含解析_第2页
2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题含解析_第3页
2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题含解析_第4页
2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省武汉市江岸区九年级数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.是关于的一元一次方程的解,则()A. B. C.4 D.2.如图的几何体,它的主视图是()A. B. C. D.3.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为()A. B. C. D.4.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在5.下列成语所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水涨船高 D.水中捞月6.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.7.如图,点的坐标为,点,分别在轴,轴的正半轴上运动,且,下列结论:①②当时四边形是正方形③四边形的面积和周长都是定值④连接,,则,其中正确的有()A.①② B.①②③ C.①②④ D.①②③④8.抛物线的顶点坐标()A.(-3,4) B.(-3,-4) C.(3,-4) D.(3,4)9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑦个图形中五角星的个数为()A.90 B.94 C.98 D.10210.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7000万,脱贫攻坚取得阶段性胜利,这里“7000万”用科学记数法表示为()A.7×103 B.7×108 C.7×107 D.0.7×108二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(3,4),则点F的坐标是_____.12.若关于的一元二次方程有实数根,则的取值范围是__________.13.已知正六边形的外接圆半径为2,则它的内切圆半径为______.14.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.15.如图,四边形是菱形,,对角线,相交于点,于,连接,则=_________度.16.已知函数的图象如图所示,若矩形的面积为,则__________.17.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.18.某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是_______.三、解答题(共66分)19.(10分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.20.(6分)已知关于的方程(1)判断方程根的情况(2)若两根异号,且正根的绝对值较大,求整数的值.21.(6分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.22.(8分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.23.(8分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点作轴交反比例函数的图象于点,连接.(1)求反比例函数的表达式.(2)求的面积.24.(8分)已知二次函数y=ax2+bx+3的图象经过点(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?25.(10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)在轴上找到一点使最大,请直接写出此时点的坐标.26.(10分)一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形的边长为4,E为的中点,,连结.,求证:为四边形的相似对角线.(2)在四边形中,,,,平分,且是四边形的相似对角线,求的长.(3)如图2,在矩形中,,,点E是线段(不取端点A.B)上的一个动点,点F是射线上的一个动点,若是四边形的相似对角线,求的长.(直接写出答案)

参考答案一、选择题(每小题3分,共30分)1、A【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算2a+4b的值【详解】将x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故选A.【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键2、A【解析】从正面看所得到的图形,进行判断即可.【详解】解:主视图就是从正面看到的图形,因此A图形符合题意,故选:A.【点睛】此题主要考查三视图,解题的关键是熟知三视图的定义.3、B【分析】点E在以F为圆心的圆上运动,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得,根据勾股定理即可求得结论.【详解】点D在C上运动时,点E在以F为圆心的圆上运动,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴,∴F是BC的中点,∴E为BD的中点,∴EF为△BCD的中位线,∴,∴,,,故,故选B.【点睛】本题考查了圆的动点问题,掌握等腰三角形的性质、圆周角定理、中位线定理、平行线的性质和勾股定理是解题的关键.4、A【解析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.5、D【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【详解】解:A、日行千里是随机事件,故本选项错误;B、守株待兔是随机事件,故本选项错误;C、水涨船高是必然事件,故本选项错误;D、水中捞月是不可能事件,故本选项正确.故选:D.【点睛】此题考查是不可能事件的判断,掌握不可能事件的定义是解决此题的关键.6、A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.7、A【分析】过P作PM⊥y轴于M,PN⊥x轴于N,易得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证得△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【详解】过P作PM⊥y轴于M,PN⊥x轴于N,

∵P(1,1),

∴PN=PM=1.

∵x轴⊥y轴,

∴∠MON=∠PNO=∠PMO=90°,则四边形MONP是正方形,

∴OM=ON=PN=PM=1,

∵∠MPN=∠APB=90°,

∴∠MPA=∠NPB.

在△MPA≌△NPB中,,

∴△MPA≌△NPB,

∴PA=PB,故①正确.

∵△MPA≌△NPB,

∴AM=BN,

∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.

当OA=OB,即OA=OB=1时,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.

∵△MPA≌△NPB,

∴.

∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.

∵∠AOB+∠APB=180°,

∴点A、O、B、P共圆,且AB为直径,所以AB≥OP,故④错误.

故选:A.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,圆周角定理,关键是推出AM=BN和推出OA+OB=OM+ON8、D【解析】根据抛物线顶点式的特点写出顶点坐标即可得.【详解】因为是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(3,4),故选D.【点睛】本题考查了抛物线的顶点,熟练掌握抛物线顶点式的特点是解题的关键.9、C【分析】根据前三个图形可得到第n个图形一共有个五角星,当n=7代入计算即可.【详解】解:第①个图形一共有个五角星;第②个图形一共有个五角星;第③个图形一共有个五角星;……第n个图形一共有个五角星,所以第⑦个图形一共有个五角星.故答案选C.【点睛】本题主要考查规律探索,解题的关键是找准规律.10、C【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】将数据7000万用科学记数法表示为.

故选:C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.二、填空题(每小题3分,共24分)11、(6,).【分析】过点D作DM⊥OB,垂足为M,先根据勾股定理求出菱形的边长,即可得到点B、D的坐标,进而可根据菱形的性质求得点A的坐标,进一步即可求出反比例函数的解析式,再利用待定系数法求出直线BC的解析式,然后解由直线BC和反比例函数的解析式组成的方程组即可求出答案.【详解】解:过点D作DM⊥OB,垂足为M,∵D(3,4),∴OM=3,DM=4,∴OD==5,∵四边形OBCD是菱形,∴OB=BC=CD=OD=5,∴B(5,0),C(8,4),∵A是菱形OBCD的对角线交点,∴A(4,2),代入y=,得:k=8,∴反比例函数的关系式为:y=,设直线BC的关系式为y=kx+b,将B(5,0),C(8,4)代入得:,解得:k=,b=﹣,∴直线BC的关系式为y=x﹣,将反比例函数与直线BC联立方程组得:,解得:,(舍去),∴F(6,),故答案为:(6,).【点睛】本题考查了菱形的性质、勾股定理、待定系数法求函数的解析式以及求两个函数的交点等知识,属于常考题型,正确作出辅助线、熟练掌握上述知识是解题的关键.12、【分析】一元二次方程有实数根,即【详解】解:一元二次方程有实数根解得【点睛】本题考查与系数的关系.13、【解析】解:如图,连接OA、OB,OG.∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OG=OA•sin60°=2×=,∴半径为2的正六边形的内切圆的半径为.故答案为.【点睛】本题考查了正多边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB是等边三角形是解决问题的关键.14、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.15、25【解析】首先求出∠HDB的度数,再利用直角三角形斜边中线定理可得OH=OD,由此可得∠OHD=∠ODH即可解决问题.【详解】∵四边形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°−∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°−ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案为:25.【点睛】本题考查了菱形的性质,直角三角形斜边中线定理,熟练掌握性质定理是解题的关键.16、-6【分析】根据题意设AC=a,AB=b解析式为y=A点的横坐标为-a,纵坐标为b,因为AB*AC=6,k=xy=-AB*AC=-6【详解】解:由题意得设AC=a,AB=b解析式为y=∴AB*AC=ab=6A(-a,b)b=∴k=-ab=-6【点睛】此题主要考查了反比例函数与几何图形的结合,注意A点的横坐标的符号.17、115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,

由题意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四边形ABCD是圆内接四边形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18、【分析】根据题意列举出所有情况,并得出两球颜色相同的情况,运用概率公式进行求解.【详解】解:一次摸出两个球的所有情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)6种,其中两球颜色相同的有2种.所以得奖的概率是.故答案为:.【点睛】本题考查概率的概念和求法,熟练掌握概率的概念即概率=所求情况数与总情况数之比和求法是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.20、(1)证明见解析;(2)m=-1【分析】(1)通过计算判别式的值得到△≥0,从而根据判别式的意义得到方程根的情况;(2)利用根与系数的关系得到x1+x2=m+2,x1x2=2m,则,解不等式组,进而得到整数m的值.【详解】解:(1)∵,∴方程有两个实数根;(2)设方程的两根为x1,x2,则x1+x2=m+2,x1x2=2m,根据题意得,解得:-2<m<0,因为m是整数,所以m=-1.【点睛】本题考查了一元二次方程根的判别式以及根与系数的关系,根据题意得出不等式组是解(2)的关键.21、(1);(1).【解析】(1)根据题意列函数关系式即可;

(1)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得利润为元.对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,∴∴(不合题意舍去),∴.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22、(1)15°;(2)证明见解析.【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=AC,利用含30度的直角三角形三边的关系得到BC=AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=AC,∵∠BAC=30°,∴BC=AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.23、(1);(2)【分析】(1)首先将点B的横坐标代入一次函数,得出其坐标,然后代入反比例函数,即可得出解析式;(2)首先求出点A的坐标,然后分别求出AC、BD,即可求得面积.【详解】一次函数的图象过点,且点的横坐标为,,点的坐标为.点在反比例函数的图象上,,反比例函数的表达式为;一次函数的图象与轴交于点,当时,,点的坐标为,轴,点的纵坐标与点的纵坐标相同,是2,点在反比例函数的图象上,当时,,解得,过作于,则,【点睛】此题主要考查一次函数与反比例函数综合应用,熟练掌握,即可解题.24、(1)y=﹣x2﹣2x+1;(2)点P(﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;

(2)代入x=-2求出y值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:解得;∴y=﹣x2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P(﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.25、(1),;(2)【分析】(1)利用待定系数法由点A坐标可求反比例函数,然后计算出B的坐标,于是可求一次函数的解析式;

(2)根据一次函数与y轴的交点P,此交点即为所求.【详解】解:(1)把代入,可得,反比例函数的解析式为把点代入,可得,.把,代入,可得解得一次函数的解析式为;(2)一次函数的解析式为y1=x+2,令x=0,则y=2,

∴一次函数与y轴的交点为P(0,2),

此时,PB-PC=BC最大,P即为所求.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,正确掌握反比例函数的性质是解题的关键.26、(1)见解析(2)或;(1)或或1【分析】(1)根据已知中相似对角线的定义,只要证明△AEF∽△ECF即可;

(2)AC是四边形ABCD的相似对角线,分两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论