2023届河南省驻马店市确山县数学九上期末检测试题含解析_第1页
2023届河南省驻马店市确山县数学九上期末检测试题含解析_第2页
2023届河南省驻马店市确山县数学九上期末检测试题含解析_第3页
2023届河南省驻马店市确山县数学九上期末检测试题含解析_第4页
2023届河南省驻马店市确山县数学九上期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.当函数是二次函数时,a的取值为()A. B. C. D.2.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若OA=2,则四边形CODE的周长为()A.4 B.6 C.8 D.103.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为().A.相离 B.相切 C.相交 D.无法确定4.如图,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.5.若,则()A. B. C. D.6.下列运算中,正确的是().A. B. C. D.7.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是()A.1 B.3 C.-1 D.-38.如图,在中,中线相交于点,连接,则的值是()A. B. C. D.9.已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.10.下列语句中正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.经过圆心的每一条直线都是圆的对称轴二、填空题(每小题3分,共24分)11.已知,且,则的值为__________.12.方程的根是_____.13.连掷两次骰子,它们的点数都是4的概率是__________.14.已知和时,多项式的值相等,则m的值等于______.15.把二次函数变形为的形式,则__________.16.如图,平行四边形中,,.以为圆心,为半径画弧,交于点,以为圆心,为半径画弧,交于点.若用扇形围成一个圆维的侧面,记这个圆锥的底面半径为;若用扇形围成另一个圆锥的侧面,记这个圆锥的底面半径为,则的值为______.17.如图,是二次函数和一次函数的图象,观察图象写出时,x的取值范围__________.18.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)三、解答题(共66分)19.(10分)解方程:3x2+1=2x.20.(6分)已知抛物线y=-x2+bx+c与直线y=-4x+m相交于第一象限内不同的两点A(5,n),B(3,9),求此抛物线的解析式.21.(6分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.(8分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出△ABC的面积;(2)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(3)在图中画出线段EF,使它同时满足以下条件:①点E在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=.请写出点E,F的坐标.23.(8分)已知二次函数y=﹣2x2+bx+c的图象经过点(0,6)和(1,8).(1)求这个二次函数的解析式;(2)①当x在什么范围内时,y随x的增大而增大?②当x在什么范围内时,y>0?24.(8分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)25.(10分)如图,已知抛物线y=﹣x2+x+4,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点.(1)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由.(2)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.26.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由函数是二次函数得到a-1≠0即可解题.【详解】解:∵是二次函数,∴a-1≠0,解得:a≠1,故选你D.【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.2、C【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【详解】解:∵CE∥BD,DE∥AC,

∴四边形CODE是平行四边形,

∵四边形ABCD是矩形,

∴AC=BD,OA=OC=2,OB=OD,

∴OD=OC=2,

∴四边形CODE是菱形,

∴四边形CODE的周长为:4OC=4×2=1.

故选:C.【点睛】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.3、C【解析】试题分析:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.【考点】直线与圆的位置关系.4、B【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】依题意,设金色纸边的宽为,则:

整理得出:.

故选:B.【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.5、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.【详解】,,,故选:.【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.6、C【解析】试题分析:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.考点:合并同类项.7、B【分析】直接根据根与系数的关系求解.【详解】由题意知:,,∴原式=2-(-1)=3故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.8、B【分析】BE、CD是△ABC的中线,可知DE是△ABC的中位线,于是有DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【详解】解:∵BE、CD是△ABC的中线,∴DE是△ABC的中位线,

∴DE∥BC,DE=BC,

∴△DOE∽△COB,∴,故选:B.【点睛】本题考查了三角形的中位线定理,相似三角形的判定与性质,证明△ODE和△OBC相似是关键.9、A【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a,b的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;若反比例函数经过第二、四象限,则a<1.所以b>1.则一次函数的图象应该经过第二、三、四象限.故选项A正确;故选A.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.10、D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A、在同圆或等圆中,长度相等的两条弧是等弧;B、平分弦(不是直径)的直径垂直于弦;C、在同圆或等圆中,相等的圆心角所对的弧相等;D、经过圆心的每一条直线都是圆的对称轴;故选D.点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.二、填空题(每小题3分,共24分)11、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.12、0和-4.【分析】根据因式分解即可求解.【详解】解∴x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.13、【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得:1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况,∴它们的点数都是4的概率是:,故答案为:.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.14、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.15、【分析】利用配方法将二次函数变成顶点式即可.【详解】,∴h=2,k=-9,即h+k=2-9=-7.故答案为:-7.【点睛】本题考查二次函数顶点式的性质,关键在于将一般式转换为顶点式.16、1【分析】设AB=a,根据平行四边形的性质分别求出弧长EF与弧长BE,即可求出的值.【详解】设AB=a,∵∴AD=1.5a,则DE=0.5a,∵平行四边形中,,∴∠D=120°,∴l1弧长EF==l2弧长BE==∴==1故答案为:1.【点睛】此题主要考查弧长公式,解题的关键是熟知弧长公式及平行四边形的性质.17、.【解析】试题分析:∵y1与y2的两交点横坐标为-2,1,当y2≥y1时,y2的图象应在y1的图象上面,即两图象交点之间的部分,∴此时x的取值范围是-2≤x≤1.考点:1、二次函数的图象;2、一次函数的图象.18、【分析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.【详解】如图,作,,垂足分别为点E,F,则四边形是矩形.由题意得,米,米,,斜坡的坡度为1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度为1∶2,∴,∴米,∴(米).∴坝底的长度等于米.故答案为.【点睛】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.三、解答题(共66分)19、x1=x2=【分析】根据配方法即可求出答案.【详解】解:原方程化为:,∴,∴x1=x2=【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解的解法,本题属于基础题型.20、y=-x2+4x+2.【分析】根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,最后利用点A、B两点的坐标求抛物线的解析式.【详解】(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=1,∴直线的解析式为y=﹣4x+1.∵点A(5,n)在直线y=﹣4x+1上,∴n=﹣4×5+1=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+2.【点睛】本题考查了利用待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.21、(1)见解析;(2)1.【解析】试题分析:根据OC=OB得到∠BCO=∠B,根据弧相等得到∠B=∠D,从而得到答案;根据题意得出CE的长度,设半径为r,则OC=r,OE=r-2,根据Rt△OCE的勾股定理得出半径.试题解析:(1)证明:∵OC=OB,∴∠BCO=∠B∵,∴∠B=∠D,∴∠BCO=∠D.(2)解:∵AB是⊙O的直径,CD⊥AB,∴CE=.在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA-AE=r-2,∴,解得:r=1,∴⊙O的半径为1考点:圆的基本性质22、(1)12;(2)见解析;(3)E(2,4),F(7,8).【分析】(1)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;

(2)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可得到△A1BC1;

(3)利用平行线分线段成比例得到CF:BE=2,则EF三等分BC,然后写出E、F的坐标,根据勾股定理求出EF的长度为【详解】解:(1)△ABC的面积=4×7﹣×7×1﹣×3×3﹣×4×4=12;(2)如图,△A1BC1为所作;(3)如图,线段EF为所作,其中E点坐标为(2,4),F点坐标为(7,8),EF的长度为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了勾股定理.23、(1)y=﹣2x2+4x+6;(2)①当x<1时,y随x的增大而增大;②当﹣1<x<3时,y>1【分析】(1)根据二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),可以求得该抛物线的解析式;(2)①根据(1)求得函数解析式,将其化为顶点式,然后根据二次函数的性质即可得到x在什么范围内时,y随x的增大而增大;②根据(1)中的函数解析式可以得到x在什么范围内时,y>1.【详解】(1)∵二次函数y=﹣2x2+bx+c的图象经过点(1,6)和(1,8),∴,得,即该二次函数的解析式为y=﹣2x2+4x+6;(2)①∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴该函数的对称轴是x=1,函数图象开口向下,∴当x<1时,y随x的增大而增大;②当y=1时,1=﹣2x2+4x+6=﹣2(x﹣3)(x+1),解得,x1=3,x2=﹣1,∴当﹣1<x<3时,y>1.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据待定系数法求出二次函数的解析式..24、24米【分析】由i==,DE2+EC2=CD2,解得DE=5m,EC=m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB=BC,设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,在Rt△ADG中,=tan∠ADG,代入即可得出结果.【详解】解:在Rt△DEC中,∵i==,,DE2+EC2=CD2,CD=10,∴DE2+(DE)2=102,解得:DE=5(m),

∴EC=m,

过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:

则四边形DEBG、四边形DECH、四边形BCHG都是矩形,

∵∠ACB=45°,AB⊥BC,

∴AB=BC,

设AB=BC=xm,则AG=(x-5)m,DG=(x+)m,

在Rt△ADG中,∵=tan∠ADG,,解得:x=15+5≈24,答:楼AB的高度为24米.【点睛】本题考查了解直角三角形的应用-方向角问题,通过解直角三角形得出方程是解题的关键.25、(1)存在点P,使△PBC的面积最大,最大面积是2;(2)M点的坐标为(1﹣2,﹣1)、(2,6)、(6,1)或(1+2,﹣﹣1).【分析】(1)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B、C的坐标,利用待定系数法即可求出直线BC的解析式,假设存在,设点P的坐标为(x,﹣x2+x+1),过点P作PD//y轴,交直线BC于点D,则点D的坐标为(x,﹣x+1),PD=﹣x2+2x,利用三角形的面积公式即可得出S△PBC关于x的函数关系式,再利用二次函数的性质即可解决最值问题;(2)设点M的坐标为(m,﹣m2+m+1),则点N的坐标为(m,﹣m+1),进而可得出MN=|﹣m2+2m|,结合MN=3即可得出关于m的含绝对值符号的一元二次方程,解之即可得出结论.【详解】解:(1)当x=0时,y=﹣x2+x+1=1,∴点C的坐标为(0,1).设直线BC的解析式为y=kx+b(k≠0).将B(8,0)、C(0,1)代入y=kx+b,.,解得:,∴直线BC的解析式为y=﹣x+1.假设存在,设点P的坐标为(x,﹣x2+x+1)(0<x<8),过点P作P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论