版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届内蒙古巴彦淖尔市第五中学九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则()A.不能构成三角形 B.这个三角形是等腰三角形C.这个三角形是直角三角形 D.这个三角形是钝角三角形2.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形3.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=14.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为A. B.5 C.4 D.35.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.26.已知如图,中,,点在边上,且,则的度数是().A. B. C. D.7.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.8.如图,在中,中线相交于点,连接,则的值是()A. B. C. D.9.某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图所示,污水水面AB宽为80cm,管道顶端最高点到水面的距离为20cm,则修理人员需准备的新管道的半径为()A.50cm B.50cm C.100cm D.80cm10.抛物线的顶点坐标是()A.(2, 1) B.(2, -1) C.(-2, 1) D.(-2, -1)二、填空题(每小题3分,共24分)11.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.12.若点是双曲线上的点,则__________(填“>”,“<”或“=”)13.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系是h=+20t+1,若此礼炮在升空到最高处时引爆,到引爆需要的时间为_____s.14.已知:如图,在平行四边形中,对角线、相较于点,在不添加任何辅助线的情况下,请你添加一个条件________________(只添加一个即可),使平行四边形成为矩形.15.某地区2017年投入教育经费2500万元,2019年计划投入教育经费3025万元,则2017年至2019年,该地区投入教育经费的年平均增长率为_____.16.如果关于的一元二次方程的一个解是,则________.17.函数y=的自变量x的取值范围是_______________.18.已知在反比例函数图象的任一分支上,都随的增大而增大,则的取值范围是______.三、解答题(共66分)19.(10分)解方程:
20.(6分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根?(2)当Rt△ABC的斜边a=,且两条直角边的长b和c恰好是这个方程的两个根时,求k的值.21.(6分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)22.(8分)在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.23.(8分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.24.(8分)如图,等边△ABC内接于⊙O,P是上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.25.(10分)现代城市绿化带在不断扩大,绿化用水的节约是一个非常重要的问题.如图1、图2所示,某喷灌设备由一根高度为0.64m的水管和一个旋转喷头组成,水管竖直安装在绿化带地面上,旋转喷头安装在水管顶部(水管顶部和旋转喷头口之间的长度、水管在喷灌区域上的占地面积均忽略不计),旋转喷头可以向周围喷出多种抛物线形水柱,从而在绿化带上喷灌出一块圆形区域.现测得喷的最远的水柱在距离水管的水平距离3m处达到最高,高度为1m.(1)求喷灌出的圆形区域的半径;(2)在边长为16m的正方形绿化带上固定安装三个该设备,喷灌区域可以完全覆盖该绿化带吗?如果可以,请说明理由;如果不可以,假设水管可以上下调整高度,求水管高度为多少时,喷灌区域恰好可以完全覆盖该绿化带.(以上需要画出示意图,并有必要的计算、推理过程)26.(10分)随着冬季的来临,为了方便冰雪爱好者雪上娱乐,某体育用品商店购进一批简易滑雪板,每件进价为100元,售价为130元,每星期可卖出80件,由于商品库存较多,商家决定降价促销,根据市场调查,每件降价1元,每星期可多卖出4件.(1)设商家每件滑雪板降价x元,每星期的销售量为y件,写出y与x之间的函数关系式:(2)降价后,商家要使每星期的利润最大,应将售价定为每件多少元?最大销售利润多少?
参考答案一、选择题(每小题3分,共30分)1、C【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,问题得解.【详解】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵12+()2=()2,∴该三角形是直角三角形,故选:C.【点睛】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.2、C【解析】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.3、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,
∴抛物线的对称轴是x=1.
故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.4、B【解析】试题分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故选B.5、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.6、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.7、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.8、B【分析】BE、CD是△ABC的中线,可知DE是△ABC的中位线,于是有DE∥BC,△ODE∽△OCB,根据相似三角形的性质即可判断.【详解】解:∵BE、CD是△ABC的中线,∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△DOE∽△COB,∴,故选:B.【点睛】本题考查了三角形的中位线定理,相似三角形的判定与性质,证明△ODE和△OBC相似是关键.9、A【分析】连接OA作弦心距,就可以构造成直角三角形.设出半径弦心距也可以得到,利用勾股定理就可以求出了.【详解】解:如图,过点O作于点C,边接AO,,在中,,,解,得AO=50故选:A【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、C【分析】已知抛物线的顶点式可直接写出顶点坐标.【详解】解:由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(-2,1).
故选C.【点睛】本题考查的是抛物线的顶点坐标,即抛物线y=(x+a)2+h中,其顶点坐标为(-a,h).二、填空题(每小题3分,共24分)11、1【分析】依题意可知所求的长度等于AB的长,通过解直角△ABC即可求解.【详解】如图,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【点睛】本题考查了解直角三角形的应用−坡度坡角问题.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.12、>【分析】根据得出反比例图象在每一象限内y随x的增大而减小,再比较两点的横坐标大小,即可比较两点的纵坐标大小.【详解】解:∵,,∴反比例函数的图象在第一、三象限内,且在每一象限内y随x的增大而减小,∵点是双曲线上的点,且1<2,∴,故答案为:>.【点睛】本题考查了反比例函数的图象与性质,掌握k>0时,反比例函数图象在每一象限内y随x的增大而减小是解题的关键.13、1【分析】将关系式h=t2+20t+1转化为顶点式就可以直接求出结论.【详解】解:∵h=t2+20t+1=(t﹣1)2+11,∴当t=1时,h取得最大值,即礼炮从升空到引爆需要的时间为1s,故答案为:1.【点睛】本题考查了二次函数的性质顶点式的运用,解答时将一般式化为顶点式是关键.14、或(等,答案不唯一)【分析】矩形是特殊的平行四边形,矩形有而平行四边形不具有的性质是:矩形的对角线相等,矩形的四个内角是直角;可针对这些特点来添加条件.【详解】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°等.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或(∠ABC=90°等)【点睛】此题主要考查的是矩形的判定方法,熟练掌握矩形和平行四边形的联系和区别是解答此题的关键.15、10%【解析】设年平均增长率为x,则经过两次变化后2019年的经费为2500(1+x)2;2019年投入教育经费3025万元,建立方程2500(1+x)2=3025,求解即可.【详解】解:设年平均增长率为x,得2500(1+x)2=3025,解得x=0.1=10%,或x=-2.1(不合题意舍去).所以2017年到2019年该地区投入教育经费的年平均增长率为10%.【点睛】本题考查一元二次方程的应用--求平均变化率的方法,能够列出式子是解答本题的关键.16、1【分析】利用一元二次方程解的定义得到,然后把变形为,再利用整体代入的方法计算.【详解】把代入方程得:,
∴,
∴.
故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17、x≥3【分析】分式有意义,分母不为0;二次根式的被开方数是非负数.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据二次根式有意义,分式有意义得:x-3≥0且x+1≠0,解得:x≥3故答案为x≥3【点睛】本题考查函数自变量的取值范围,基础知识扎实是解题关键18、【分析】根据反比例函数的图象与性质即可求出k的范围.【详解】解:由题意可知:,
∴,故答案为:.【点睛】本题考查反比例函数的性质,解题的关键是熟练运用反比例函数的性质,本题属于基础题型.三、解答题(共66分)19、x1=4,x2=-2【解析】试题分析:因式分解法解方程.试题解析:x2-2x-8=0(x-4)(x+2)=0x1=4,x2=-220、(1)见解析;(2)1【分析】(1)根据根的判别式的符号来证明;(2)根据韦达定理得到b+c=2k+1,bc=4k-1.又在直角△ABC中,根据勾股定理,得(b+c)2﹣2bc=()2,由此可以求得k的值.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×(4k﹣1)=4k2﹣12k+11=(2k﹣1)2+4,∴无论k取什么实数值,总有=(2k﹣1)2+4>0,即△>0,∴无论k取什么实数值,该方程总有两个不相等的实数根;(2)解:∵两条直角边的长b和c恰好是方程x2﹣(2k+1)x+4k﹣1=0的两个根,得∴b+c=2k+1,bc=4k﹣1,又∵在直角△ABC中,根据勾股定理,得b2+c2=a2,∴(b+c)2﹣2bc=()2,即(2k+1)2﹣2(4k﹣1)=11,整理后,得k2﹣k﹣6=0,解这个方程,得k=﹣2或k=1,当k=﹣2时,b+c=﹣4+1=﹣1<0,不符合题意,舍去,当k=1时,b+c=2×1+1=7,符合题意,故k=1.【点睛】此题考查根的判别式,掌握运算法则是解题关键21、隧道AB的长为(1800﹣600)m【分析】易得∠CAO=60°,∠CBO=45°,利用相应的正切值可得BO,AO的长,相减即可得到AB的长.【详解】解:∵CDOB,∴∠CAO=∠DCA=60°,∠CBO=∠DCB=45°,在RtCAO中,tan∠CAO==tan60°,∴,∴OA=600,在RtCAO中,tan∠CBO==tan45°,∴OB=OC=1800,∴AB=OB﹣OA=1800﹣600.答:隧道AB的长为(1800﹣600)m.【点睛】本题考查了解直角三角形的应用﹣俯角和仰角,解答本题的关键是利用三角函数值得到与所求线段相关线段的长度.22、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根据已知条件求出d的范围:1≤d≤3,再将各点距离O点的距离,进行判断是否在此范围内即可,满足条件的即为随心点;(2)根据点E(4,3)是⊙O的“随心点”,可根据,求出d=5,再求出r的范围即可;(3)如图a∥b∥c∥d,⊙O的半径r=2,求出随心点范围,再分情况点N在y轴正半轴时,当点N在y轴负半轴时,分情况讨论即可.【详解】(1)∵⊙O的半径r=2,
∴=3,=1∴1≤d≤3∵A(3,0),
∴OA=3,在范围内
∴点A是⊙O的“随心点”∵B(0,4)∴OB=4,而4>3,不在范围内∴B是不是⊙O的“随心点”,
∵C(,2),
∴OC=,在范围内
∴点C是⊙O的“随心点”,
∵D(,),
∴OD=<1,不在范围内
∴点D不是⊙O的“随心点”,
故答案为:A,C(2)∵点E(4,3)是⊙O的“随心点”∴OE=5,即d=5若,∴r=10若,∴(3)
∵如图a∥b∥c∥d,⊙O的半径r=2,随心点范围∴∵直线MN的解析式为y=x+b,
∴OM=ON,
①点N在y轴正半轴时,
当点M是⊙O的“随心点”,此时,点M(-1,0),
将M(-1,0)代入直线MN的解析式y=x+b中,解得,b=1,
即:b的最小值为1,
过点O作OG⊥M'N'于G,
当点G是⊙O的“随心点”时,此时OG=3,
在Rt△ON'G中,∠ON'G=45°,
∴GO=3∴在Rt△GNN’中,===,
b的最大值为,
∴1≤b≤,
②当点N在y轴负半轴时,同①的方法得出-≤b≤-1.
综上所述,b的取值范围是:1≤b≤或-≤b≤-1.【点睛】此题考查了一次函数的综合题,主要考查了新定义,点到原点的距离的确定,解(3)的关键是找出线段MN上的点是圆O的“随心点”的分界点,是一道中等难度的题目.23、1.1里【分析】通过证明△HFA∽△AEG,然后利用相似比求出FH即可.【详解】∵四边形ABCD是矩形,EG⊥AB,FH⊥AD,∴∠HFA=∠DAB=∠AEG=90°,∴FA∥EG.∴∠HAF=∠G.∴△HFA∽△AEG,∴=,即=,解得FH=1.1.答:FH等于1.1里.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求线段的长度.24、(1)60;60;(2)证明见解析;(3).【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用(1)中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用(2)证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案为60,60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM≌△BCP;(3)作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CPAM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抖音直播年终总结汇报
- 创新工程实践活动总结
- 缓解分离焦虑培训课件
- 高中物理第十二章机械波3波长频率和波速课件新人教版选修3-
- 山西省运城市平陆县多校2024-2025学年二年级上学期期中数学试题
- 河南省邓州市春雨国文学校2024-2025学年高三上学期10月月考英语试卷(含答案)
- T-XMSSAL 0104-2024 供厦食品 可生食鸡蛋
- 期中摸底测试(1-4单元)(试题)-2024-2025学年三年级上册数学人教版
- 会计师事务所的组织形式
- 投诉管理与投诉处理
- 克罗恩病CTMRI诊断课件
- 家用食品粉碎机的设计毕业设计说明书
- 焊材的贮存与保管制度
- 物业小区外来人员管理规定
- 小学英语-PEP小学英语四年级上册Unit4B Let's talk教学设计学情分析教材分析课后反思
- 语文自主学习教学研究课题开题报告
- 成人雾化吸入护理-2023中华护理学会团体标准
- 中小学衔接教育
- 提高手术室手卫生依从性专家讲座
- 傅雷家书读后感3000字(3篇)
- 房建工程二次预埋施工技术交底强弱电管线预埋
评论
0/150
提交评论