黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题含解析_第1页
黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题含解析_第2页
黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题含解析_第3页
黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题含解析_第4页
黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨双城区六校联考2025届数学九上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.3 C. D.2.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内 B.P在圆上 C.P在圆外 D.无法确定3.如图,在边长为4的菱形ABCD中,∠ABC=120°,对角线AC与BD相交于点O,以点O为圆心的圆与菱形ABCD的四边都相切,则图中阴影区域的面积为()A. B. C. D.4.若直线y=kx+b经过第一、二、四象限,则直线y=bx+k的图象大致是()A. B. C. D.5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.7.如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上的一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则下列结论中:①;②;③tan∠EAF=;④正确的是()A.①②③ B.①②④ C.①③④ D.②③④8.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.99.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米10.某微生物的直径为0.000005035m,用科学记数法表示该数为()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5二、填空题(每小题3分,共24分)11.已知3a=4b≠0,那么=_____.12.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=_______.13.若将方程x2+6x=7化为(x+m)2=16,则m=______.14.如图,四边形ABCD中,∠BAD=∠BCD=90°,∠B=45°,DE⊥AC于E交AB于F,若BC=2CD,AE=2,则线段BF=______.15.若是方程的一个根,则代数式的值等于______.16.已知关于的方程有两个不相等的实数根,则的取值范围是__________.17.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.18.如图,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.三、解答题(共66分)19.(10分)如图,四边形ABCD为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B'C'恰好经过点D,且满足B'C'⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN=.20.(6分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4(1)求的值;(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP(Ⅰ)求的值;(Ⅱ)判断CP与AF的位置关系,并说明理由.21.(6分)如图,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分别为D,E,F.(1)求证:CE•CA=CF•CB;(2)EF交CD于点O,求证:△COE∽△FOD;22.(8分)如图,已知为⊙的直径,为⊙的一条弦,点是⊙外一点,且,垂足为点,交⊙于点,的延长线交⊙于点,连接.(1)求证:;(2)若,求证:是⊙的切线;(3)若,,求⊙的半径.23.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.24.(8分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.25.(10分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.26.(10分)先化简,再求值:1-,其中a、b满足.

参考答案一、选择题(每小题3分,共30分)1、C【分析】解直角三角形求得AB=2,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=2x,根据三角形面积公式即可得到S△BDHBD•ADx(2x)(x)2,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=2,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=2x,∴S△BDHBD•ADx(2x)(x)2,∴△BDH面积的最大值是.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.2、C【解析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.3、C【分析】如图,分别过O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,则.分别求出上式中各量即可得到解答.【详解】如图,过O作OE⊥AB于E,由题意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故选C.【点睛】本题考查圆的综合应用,在审清题意的基础上把图形分割成几块计算后再综合是解题关键.4、A【分析】首先根据线y=kx+b经过第一、二、四象限,可得k<0,b>0,再根据k<0,b>0判断出直线y=bx+k的图象所过象限即可.【详解】根据题意可知,k<0,b>0,∴y=bx+k的图象经过一,三,四象限.故选A.【点睛】此题主要考查了一次函数y=kx+b图象所过象限与系数的关系:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.5、C【详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.6、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.7、A【解析】利用正方形的性质,得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再证明△ABM∽△FDM,即可解答①;根据题意可知:AF=DE=AE=,再根据三角函数即可得出③;作PH⊥AN于H.利用平行线的性质求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【详解】解:∵正方形ABCD的边长为2,点E是BC的中点,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正确;根据题意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正确,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正确,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN与△DPE不相似,故④错误.故选:A.【点睛】此题考查三角函数,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质难度较大,解题关键在于综合掌握各性质8、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【点睛】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.9、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴,解得:,所以解析式为:y=x2+x+,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10、A【解析】试题分析:0.000005035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.二、填空题(每小题3分,共24分)11、.【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.12、【分析】作CD⊥AB于点D,先在Rt△ACD中求得CD的长,再解Rt△BCD即得结果.【详解】如图,作CD⊥AB于点D:,∠A=30°,,得,,∠B=45°,,解得考点:本题考查的是解直角三角形点评:解答本题的关键是作高,构造直角三角形,正确把握公共边CD的作用.13、3【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.14、【分析】连接,延长BA,CD交于点,根据∠BAD=∠BCD=90°可得点A、B、C、D四点共圆,根据圆周角定理可得,根据DE⊥AC可证明△AED∽△BCD,可得,利用勾股定理可求出AD的长,由∠ABC=45°可得△ABG为等腰直角三角形,进而可得△ADG是等腰直角三角形,即可求出AG、DG的长,根据BC=2CD可求出CD、BC、AB的长,根据,可证明△AED∽△FAD,根据相似三角形的性质可求出AF的长,即可求出BF的长.【详解】连接,延长BA,CD交于点,∵,∴四点共圆,∴,∵,∴,∴△AED∽△BCD,∴,∴,∴AD==,∵∴是等腰直角三角形,∵BC=2CD,∴∴CD=DG,∵,∴是等腰直角三角形,∴,∴,∵,,∴△AED∽△FAD,∴,∴∴.【点睛】本题考查圆周角定理、勾股定理及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟练掌握相似三角形的判定定理是解题关键.15、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.16、且【分析】根据根的判别式和一元一次方程的定义得到关于的不等式,求出的取值即可.【详解】关于的一元二次方程有两个不相等的实数根,∵,∴且,

解得:且,

故答案为:且.【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于的不等式是解此题的关键.17、1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD=(m+n﹣4),DA=n,即2n2﹣1n+16=(m+n﹣4)×n,解得:mn=1=k,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E的坐标,确定相关线段的长度,进而求解.18、10【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R−2)2,解得R=5,∴该光盘的直径是10cm.故答案为:10.【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.三、解答题(共66分)19、(1)图见解析(2)图见解析(3)【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=2,∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=2−2设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(2−2)2,解得y=−1.(2−x)2=x2+(−1)2解得x=.故答案为:.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.20、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.【解析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.【详解】(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴,∵FG∥AB,∴;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵,∴△BCG∽△ACF,∴;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.21、(1)证明见解析;(2)证明见解析【分析】(1)本题首先根据垂直性质以及公共角分别求证△CED∽△CDA,△CDF∽△CBD,继而以为中间变量进行等量替换证明本题.(2)本题以第一问结论为前提证明△CEF∽△CBA,继而根据垂直性质证明∠OFD=∠ECO,最后利用“角角”判定证明相似.【详解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE•CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB•CF,则CA•CE=CB•CF;(2)∵CA•CE=CB•CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.【点睛】本题考查相似的判定与性质综合,相似判定难点首先在于确定哪两个三角形相似,其次是判定定理的选择,相似判定常用“角角”定理,另外需注意相似图形其潜在信息点是边的比例关系以及角等.22、(1)见解析;(2)见解析;(3)5【分析】(1)根据圆周角定理可得出,再结合,即可证明结论;(2)连接,利用三角形内角和定理以及圆周角定理可得出,,得出即可证明;(3)由已知条件得出,设,则,利用勾股定理求解即可.【详解】(1)证明:∵是直径,∴,∵,∴,∴;(2)证明:如图,连接,∵,∴,∴,∵,∴,∵,∴,∵,∴,∴,∵是半径,∴是⊙的切线;(3)解:∵∴又∵∴设∵∴在中,解得,,(舍去)∴⊙的半径为5.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有平行线的判定、切线的判定、三角形内角和定理、勾股定理、圆周角定理等,掌握以上知识点是解此题的关键.23、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论