版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市2025届九年级数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40° B.45° C.50° D.60°2.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A.50° B.55° C.65° D.70°3.如图,四边形内接于,延长交于点,连接.若,,则的度数为()A. B. C. D.4.cos60°的值等于()A. B. C. D.5.如下图:⊙O的直径为10,弦AB的长为8,点P是弦AB上的一个动点,使线段OP的长度为整数的点P有()A.3个 B.4个 C.5个 D.6个6.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④7.在下列命题中,正确的是A.对角线相等的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形8.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.49.顺次连接四边形ABCD各边的中点,所得四边形是()A.平行四边形B.对角线互相垂直的四边形C.矩形D.菱形10.下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件11.如图,在由边长为1的小正方形组成的网格中,点,,,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为()A. B. C. D.12.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在□ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若△DEM的面积为1,则□ABCD的面积为________.14.如图,设点P在函数y=的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为_____.15.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C=__.16.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若=,则的值为_____.17.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.18.计算若,那么a2019+b2020=____________.三、解答题(共78分)19.(8分)先化简,再求值,,其中m满足:m2﹣4=1.20.(8分)如图,请在下列四个论断中选出两个作为条件,推出四边形ABCD是平行四边形,并予以证明(写出一种即可).①AD∥BC;②AB=CD;③∠A=∠C;④∠B+∠C=180°.已知:在四边形ABCD中,____________.求证:四边形ABCD是平行四边形.21.(8分)如图,在△ABC中,∠ACB=90°,D为AC的中点,DE⊥AB于点E,AC=8,AB=1.求AE的长.22.(10分)学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长米、宽米的矩形空地上.如图,空地被划分出个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为平方米,小路的宽应为多少米?23.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.24.(10分)如图,在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=60°,BE=2,求△ABC的周长.25.(12分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?26.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.(1)当售价为万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:∵点C是的中点,故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.2、B【解析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.3、B【分析】根据圆内接四边形的性质得到∠DAB,进而求出∠EAB,根据圆周角定理得到∠EBA=90°,根据直角三角形两锐角互余即可得出结论.【详解】∵四边形ABCD内接于⊙O,∴∠DAB=180°﹣∠C=180°﹣100°=80°.∵∠DAE=50°,∴∠EAB=∠DAB-∠DAE=80°-50°=30°.∵AE是⊙O的直径,∴∠EBA=90°,∴∠E=90°﹣∠EAB=90°-30°=60°.故选:B.【点睛】本题考查了圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4、A【解析】试题分析:因为cos60°=,所以选:A.考点:特殊角的三角比值.5、A【分析】当P为AB的中点时OP最短,利用垂径定理得到OP垂直于AB,在直角三角形AOP中,由OA与AP的长,利用勾股定理求出OP的长;当P与A或B重合时,OP最长,求出OP的范围,由OP为整数,即可得到OP所有可能的长.【详解】当P为AB的中点时,由垂径定理得OP⊥AB,此时OP最短,∵AB=8,∴AP=BP=4,在直角三角形AOP中,OA=5,AP=4,根据勾股定理得OP=3,即OP的最小值为3;当P与A或B重合时,OP最长,此时OP=5,∴,则使线段OP的长度为整数的点P有3,4,5,共3个.故选A考点:1.垂径定理;2.勾股定理6、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.7、C【分析】根据平行四边形、矩形、菱形、正方形的判定方法逐项分析解答即可.【详解】解:A、∵等腰梯形的对角线相等,但不是平行四边形,∴应对角线相等的四边形不一定是平行四边形,故不正确;B、∵有一个角是直角的四边形可能是矩形、直角梯形,∴有一个角是直角的四边形不一定是矩形,故不正确;C、∵有一组邻边相等的平行四边形是菱形,故正确;D、对角线互相垂直平分的四边形是菱形,故不正确.故选:C.【点睛】本题考查了平行四边形、矩形、菱形、正方形的判定方法的理解,熟练掌握平行四边形、矩形、菱形、正方形的判定方法的判定方法是解答本题的关键.8、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【点睛】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.9、A【解析】试题分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:如图,根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.10、C【解析】试题解析:A.“经过有交通信号的路口遇到红灯”是随机事件,说法错误.B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C.投掷一枚硬币正面朝上是随机事件,说法正确.D.明天太阳从东方升起是必然事件.说法错误.故选C.11、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为∠BAD=45°,∴扇形的面积==故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.12、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°
∠BDO+∠BEO=180°
∴B、D、O、E四点共圆
∴∠DOE=180°−∠B=180°−50°=130°
又∵∠DFE是圆周角,∠DOE是圆心角
∠DFE=∠DOE=65°
故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.二、填空题(每题4分,共24分)13、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF,△DEM∽△BHM∴,∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵∴∴∴∴∴∴∴∵四边形ABCD是平行四边形∴故答案为:16.14、4【解析】=6-1-1=4【点睛】本题考察了反比例函数的几何意义及割补法求图形的面积.通过观察可知,所求四边形的面积等于矩形OCPD的面积减去△OBD和△OCA的面积,而矩形OCPD的面积可通过的比例系数求得;△OBD和△OCA的面积可通过的比例系数求得,从而用矩形OCPD的面积减去△OBD和△OCA的面积即可求得答案.15、【分析】先根据∠AOC的度数和∠BOC的度数,可得∠AOB的度数,再根据△AOD中,AO=DO,可得∠A的度数,进而得出△ABO中∠B的度数,可得∠C的度数.【详解】解:∵∠AOC的度数为105°,由旋转可得∠AOD=∠BOC=40°,∴∠AOB=105°-40°=65°,∵△AOD中,AO=DO,∴∠A=(180°-40°)=70°,∴△ABO中,∠B=180°-70°-65°=45°,由旋转可得,∠C=∠B=45°,故答案为:45°.【点睛】本题考查旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用旋转的性质解答.16、.【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.17、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,,,四边形ABCD是矩形,,,,,,,设,则,在中,,,,即,,,,≌,,,,,,由折叠的性质可得:,,,,,故答案为.【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.18、0【分析】根据二次根式和绝对值的非负数性质可求出a、b的值,进而可得答案.【详解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案为:0【点睛】本题考查二次根式和绝对值的非负数性质,如果几个非负数的和为0,那么这几个非负数分别为0;熟练掌握非负数性质是解题关键.三、解答题(共78分)19、,﹣【分析】先根据分式的混合运算顺序和运算法则化简原式,再求出符合条件的m的值,从而代入计算可得.【详解】解:原式=÷==,∵m2﹣4=1且m≠2,∴m=﹣2,则原式==﹣.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20、已知:①③(或①④或②④或③④),证明见解析.【解析】试题分析:根据平行四边形的判定方法就可以组合出不同的结论,然后即可证明.其中解法一是证明两组对角相等的四边形是平行四边形;解法二是证明两组对边平行的四边形是平行四边形;解法三是证明一组对边平行且相等的四边形是平行四边形;解法四是证明两组对角相等的四边形是平行四边形.试题解析:已知:①③,①④,②④,③④均可,其余均不可以.解法一:已知:在四边形ABCD中,①AD∥BC,③∠A=∠C,求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.解法二:已知:在四边形ABCD中,①AD∥BC,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AD∥BC,∴四边形ABCD是平行四边形;解法三:已知:在四边形ABCD中,②AB=CD,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形;解法四:已知:在四边形ABCD中,③∠A=∠C,④∠B+∠C=180°,求证:四边形ABCD是平行四边形.证明:∵∠B+∠C=180°,∴AB∥CD,∴∠A+∠D=180°,又∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形.考点:平行四边形的判定.21、.【分析】求出AD的长,根据△ADE∽△ABC,可得,则可求出AE的长.【详解】解:∵AC=8,D为AC的中点,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.【点睛】本题考查的知识点是相似三角形判定及其性质,熟记定理和性质是解题的关键.22、小路的宽应为米.【分析】设每条道路的宽为米,则活动区域可以看成长为米、宽为米的矩形,根据矩形的面积公式结合活动区域的面积为平方米,即可得出关于的一元二次方程,解之取其较小值即可得出结论.【详解】设小路宽度为米,由题意,可列方程如下:解得:;(舍去)答:小路的宽应为米.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24、(1)证明见解析;(2)1.【解析】试题分析:(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.试题解析:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)∵AB=AC,∠A=60°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华文版六年级上册书法教案
- 2011年7月2日四川省公务员面试真题
- 辽宁省辽阳市2024-2025学年高一上学期期中考试 历史 含答案
- 河北省公务员面试模拟110
- 天津面试模拟38
- 2024年挂靠的协议书
- 江西省公务员录用考试《申论》试题
- 2024年工资代收协议书
- 2024年工程建筑承包合同
- 新解读《GBT 41205.1-2021应急物资编码与属性描述 第1部分:个体防护装备》
- 《电子合同基础信息描述规范》
- (高清版)TDT 1072-2022 国土调查坡度分级图制作技术规定
- 陕西金拴塑业有限公司年产1万吨农用薄膜及年产2万吨橡胶粉建设项目环境影响报告
- 航空物流教育培训课件模板
- 机场能源管理与优化
- 签约仪式活动议程
- 国家突发公共卫生事件相关信息报告管理工作规范课件
- 小升初语文真题专项训练专题7+古诗文默写(有解析)
- 我国计算机发展历史
- 德育主题班会-与同学友好相处课件
- 骨科手术机器人课件
评论
0/150
提交评论