版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题9.6直线与圆锥曲线(真题测试)一、单选题1.(全国·高考真题(理))已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为()A.+=1 B.+=1C.+=1 D.+=12.(全国·高考真题(文))设抛物线C:y2=4x的焦点为F,直线过F且与C交于A,B两点.若|AF|=3|BF|,则的方程为()A.y=x-1或y=-x+1B.y=(X-1)或y=(x-1)C.y=(x-1)或y=(x-1)D.y=(x-1)或y=(x-1)3.(2023·全国·高考真题(理))椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为(
)A. B. C. D.4.(2023·四川广安·模拟预测(文))已知抛物线的焦点F与椭圆的右焦点重合.斜率为直线l经过点F,且与C的交点为A,B.若,则直线l的方程是(
)A. B.C. D.5.(2023·安徽·高三开学考试)过抛物线的焦点的直线与交于两点,若,则的倾斜角(
)A. B.或 C.或 D.或6.(2023·全国·高三专题练习)斜率为1的直线l与椭圆相交于A,B两点,则的最大值为(
)A.2 B. C. D.7.(2023·河南·模拟预测(文))已知双曲线的离心率为,直线与交于两点,为线段的中点,为坐标原点,则与的斜率的乘积为(
)A. B. C. D.8.(2023·全国·高考真题(理))已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为(
)A. B. C. D.二、多选题9.(2023·湖南湘潭·高三开学考试)已知直线与抛物线交于两点,点为坐标原点,若线段的中点是,则(
)A. B. C. D.10.(2023·云南昆明·高三开学考试)椭圆的左、右焦点分别为,,上、下顶点分别为,,与C的另一交点为M,与C的另一交点为N,若直线与直线的斜率之积为,则(
)A.C的离心率为B.C.的周长为18D.设的面积为,的面积为,则11.(2023·湖南·宁乡市教育研究中心模拟预测)在平面直角坐标系中,已知双曲线的离心率为,且双曲线的右焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、,则下列说法正确的是(
)A.双曲线的渐近线方程为 B.双曲线的方程为C.为定值 D.存在点,使得12.(2023·全国·高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则(
)A.直线的斜率为 B.C. D.三、填空题13.(2023·广东佛山·高三阶段练习)已知圆的方程为,抛物线的方程为,则两曲线的公共切线的其中一条方程为_____________.14.(2023·全国·高考真题(文))已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.15.(2023·海南·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.16.(2023·全国·高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.四、解答题17.(2023·北京·高考真题)已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.答案:(1)(2)分析:(1)依题意可得,即可求出,从而求出椭圆方程;(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;(1)解:依题意可得,,又,所以,所以椭圆方程为;(2)解:依题意过点的直线为,设、,不妨令,由,消去整理得,所以,解得,所以,,直线的方程为,令,解得,直线的方程为,令,解得,所以,所以,即即即整理得,解得18.(2023·全国·高考真题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.答案:(1);(2).分析:(1)利用双曲线的定义可知轨迹是以点、为左、右焦点双曲线的右支,求出、的值,即可得出轨迹的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C的方程,结合韦达定理求得直线的斜率,最后化简计算可得的值.【详解】(1)因为,所以,轨迹是以点、为左、右焦点的双曲线的右支,设轨迹的方程为,则,可得,,所以,轨迹的方程为.(2)[方法一]【最优解】:直线方程与双曲线方程联立如图所示,设,设直线的方程为.联立,化简得.则.故.则.设的方程为,同理.因为,所以,化简得,所以,即.因为,所以.[方法二]:参数方程法设.设直线的倾斜角为,则其参数方程为,联立直线方程与曲线C的方程,可得,整理得.设,由根与系数的关系得.设直线的倾斜角为,,同理可得由,得.因为,所以.由题意分析知.所以,故直线的斜率与直线的斜率之和为0.[方法三]:利用圆幂定理因为,由圆幂定理知A,B,P,Q四点共圆.设,直线的方程为,直线的方程为,则二次曲线.又由,得过A,B,P,Q四点的二次曲线系方程为:,整理可得:,其中.由于A,B,P,Q四点共圆,则xy项的系数为0,即.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.19.(2023·北京·高考真题)已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.20.(2023·全国高考真题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.21.(2023·山东·高考真题)已知抛物线的顶点在坐标原点,椭圆的顶点分别为,,,,其中点为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点的直线与抛物线交于,两点,且,求直线的方程.22.(2023·全国·高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.(1)求l的斜率;(2)若,求的面积.专题9.6直线与圆锥曲线(真题测试)一、单选题1.(全国·高考真题(理))已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为()A.+=1 B.+=1C.+=1 D.+=1答案:D【详解】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.2.(全国·高考真题(文))设抛物线C:y2=4x的焦点为F,直线过F且与C交于A,B两点.若|AF|=3|BF|,则的方程为()A.y=x-1或y=-x+1B.y=(X-1)或y=(x-1)C.y=(x-1)或y=(x-1)D.y=(x-1)或y=(x-1)答案:C【详解】设A(x1,y1),B(x2,y2),又F(1,0),则=(1-x1,-y1),=(x2-1,y2),由题意知=3,因此即又由A、B均在抛物线上知解得直线l的斜率为=±,因此直线l的方程为y=(x-1)或y=-(x-1).故选C.3.(2023·全国·高考真题(理))椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为(
)A. B. C. D.答案:A分析:设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.【详解】解:,设,则,则,故,又,则,所以,即,所以椭圆的离心率.故选:A.4.(2023·四川广安·模拟预测(文))已知抛物线的焦点F与椭圆的右焦点重合.斜率为直线l经过点F,且与C的交点为A,B.若,则直线l的方程是(
)A. B.C. D.答案:A分析:根据椭圆方程求得,写出直线的方程并与抛物线方程联立,化简写出根与系数关系,结合抛物线的定义求得,由此求得直线的方程.【详解】椭圆,,所以,,所以抛物线:.设,直线的方程为.联立消去,化简整理得,则.因此直线的方程是.故选:A.5.(2023·安徽·高三开学考试)过抛物线的焦点的直线与交于两点,若,则的倾斜角(
)A. B.或 C.或 D.或答案:D分析:设,令,代入抛物线的方程,整理后利用根与系数的关系,再由,得,解出的值,即可求出的倾斜角.【详解】因为焦点,设,令,由,消可得,,所以,所以所以,解得:所以的斜率为,则的倾斜角或故选:D.6.(2023·全国·高三专题练习)斜率为1的直线l与椭圆相交于A,B两点,则的最大值为(
)A.2 B. C. D.答案:D分析:设直线方程与椭圆方程联立,求得弦长,即可得到最大值.【详解】设两点的坐标分别为,,直线l的方程为,由消去y得,则,.∴,∴当时,取得最大值,故选:D.7.(2023·河南·模拟预测(文))已知双曲线的离心率为,直线与交于两点,为线段的中点,为坐标原点,则与的斜率的乘积为(
)A. B. C. D.答案:B分析:设出,,的坐标,利用点差法,结合为线段的中点,以及两点之间的斜率公式,通过恒等变换,得到与的斜率的乘积与的关系,根据化简可得答案.【详解】设,,,则,两式作差,并化简得,,所以,因为为线段的中点,即所以,即,由,得.故选:B.8.(2023·全国·高考真题(理))已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为(
)A. B. C. D.答案:D分析:由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据可知,当直线时,最小,求出以为直径的圆的方程,根据圆系的知识即可求出直线的方程.【详解】圆的方程可化为,点到直线的距离为,所以直线与圆相离.依圆的知识可知,四点四点共圆,且,所以,而,当直线时,,,此时最小.∴即,由解得,.所以以为直径的圆的方程为,即,两圆的方程相减可得:,即为直线的方程.故选:D.二、多选题9.(2023·湖南湘潭·高三开学考试)已知直线与抛物线交于两点,点为坐标原点,若线段的中点是,则(
)A. B. C. D.答案:AC分析:联立抛物线与直线的方程,结合韦达定理,然后对选项逐一判断即可.【详解】设,由得,所以,所以,又点在直线l上,所以,所以A正确,B错误;对于C,因为直线l经过抛物线的焦点,所以,所以C正确;对于D,因为,所以,所以,所以D错误,故选:AC.10.(2023·云南昆明·高三开学考试)椭圆的左、右焦点分别为,,上、下顶点分别为,,与C的另一交点为M,与C的另一交点为N,若直线与直线的斜率之积为,则(
)A.C的离心率为B.C.的周长为18D.设的面积为,的面积为,则答案:ABCD分析:设,与椭圆方程联立,根据直线与直线的斜率之积为,求得a,b,c,再逐项求解判断.【详解】解:如图所示:设,联立,得,解得,,则,所以,因为直线与直线的斜率之积为,所以,即,则,所以,,则,,,所以,,则,故选:ABCD11.(2023·湖南·宁乡市教育研究中心模拟预测)在平面直角坐标系中,已知双曲线的离心率为,且双曲线的右焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、,则下列说法正确的是(
)A.双曲线的渐近线方程为 B.双曲线的方程为C.为定值 D.存在点,使得答案:ABD分析:对于AB,利用双曲线的概念及几何性质可以容易判断;对于C,利用点在双曲线上得到,进而直接化简即可;对于D,利用的范围可以判断得范围,进而可以判断存在点与否.【详解】因为双曲线的右焦点在直线上,易得右焦点坐标为,故,由于离心率为,则,所以,所以双曲线方程为,故B正确;易得双曲线渐近线方程为,故A正确;设点,又、,则,即,故,故C错误;因为在第一象限,则,即,即,,所以,故存在点,使得,故D正确.故选:ABD.12.(2023·全国·高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则(
)A.直线的斜率为 B.C. D.答案:ACD分析:由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.三、填空题13.(2023·广东佛山·高三阶段练习)已知圆的方程为,抛物线的方程为,则两曲线的公共切线的其中一条方程为_____________.答案:分析:设切线方程,分别与圆的方程以及抛物线方程进行联立,利用各自的,即可求解.【详解】设切线方程为:,分别联立方程得到和,得和,得和,解得和,解得或,所以,两曲线的公共切线的其中一条方程可为:故答案为:14.(2023·全国·高考真题(文))已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.答案:分析:根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.【详解】因为为上关于坐标原点对称的两点,且,所以四边形为矩形,设,则,所以,,即四边形面积等于.故答案为:.15.(2023·海南·高考真题)斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.答案:分析:先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【详解】∵抛物线的方程为,∴抛物线的焦点F坐标为,又∵直线AB过焦点F且斜率为,∴直线AB的方程为:代入抛物线方程消去y并化简得,解法一:解得
所以解法二:设,则,过分别作准线的垂线,设垂足分别为如图所示.故答案为:16.(2023·全国·高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.答案:分析:令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;【详解】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:四、解答题17.(2023·北京·高考真题)已知椭圆:的一个顶点为,焦距为.(1)求椭圆E的方程;(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.答案:(1)(2)分析:(1)依题意可得,即可求出,从而求出椭圆方程;(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;(1)解:依题意可得,,又,所以,所以椭圆方程为;(2)解:依题意过点的直线为,设、,不妨令,由,消去整理得,所以,解得,所以,,直线的方程为,令,解得,直线的方程为,令,解得,所以,所以,即即即整理得,解得18.(2023·全国·高考真题)在平面直角坐标系中,已知点、,点的轨迹为.(1)求的方程;(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.答案:(1);(2).分析:(1)利用双曲线的定义可知轨迹是以点、为左、右焦点双曲线的右支,求出、的值,即可得出轨迹的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C的方程,结合韦达定理求得直线的斜率,最后化简计算可得的值.【详解】(1)因为,所以,轨迹是以点、为左、右焦点的双曲线的右支,设轨迹的方程为,则,可得,,所以,轨迹的方程为.(2)[方法一]【最优解】:直线方程与双曲线方程联立如图所示,设,设直线的方程为.联立,化简得.则.故.则.设的方程为,同理.因为,所以,化简得,所以,即.因为,所以.[方法二]:参数方程法设.设直线的倾斜角为,则其参数方程为,联立直线方程与曲线C的方程,可得,整理得.设,由根与系数的关系得.设直线的倾斜角为,,同理可得由,得.因为,所以.由题意分析知.所以,故直线的斜率与直线的斜率之和为0.[方法三]:利用圆幂定理因为,由圆幂定理知A,B,P,Q四点共圆.设,直线的方程为,直线的方程为,则二次曲线.又由,得过A,B,P,Q四点的二次曲线系方程为:,整理可得:,其中.由于A,B,P,Q四点共圆,则xy项的系数为0,即.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解;方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.19.(2023·北京·高考真题)已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.答案:(Ⅰ);(Ⅱ)1.分析:(Ⅰ)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【详解】(Ⅰ)设椭圆方程为:,由题意可得:,解得:,故椭圆方程为:.(Ⅱ)[方法一]:设,,直线的方程为:,与椭圆方程联立可得:,即:,则:.直线MA的方程为:,令可得:,同理可得:.很明显,且,注意到,,而,故.从而.[方法二]【最优解】:几何含义法①当直线l与x轴重合,不妨设,由平面几何知识得,所以.②当直线l不与x轴重合时,设直线,由题意,直线l不过和点,所以.设,联立得.由题意知,所以.且.由题意知直线的斜率存在..当时,.同理,.所以.因为,所以.【整体点评】方法一直接设直线的方程为:,联立方程消去y,利用韦达定理化简求解;方法二先对斜率为零的情况进行特例研究,在斜率不为零的情况下设直线方程为,联立方程消去x,直接利用韦达定理求得P,Q的纵坐标,运算更为简洁,应为最优解法.20.(2023·全国高考真题)已知椭圆C的方程为,右焦点为,且离心率为.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.答案:(1);(2)证明见解析.分析:(1)由离心率公式可得,进而可得,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证;充分性:设直线,由直线与圆相切得,联立直线与椭圆方程结合弦长公式可得,进而可得,即可得解.【详解】(1)由题意,椭圆半焦距且,所以,又,所以椭圆方程为;(2)由(1)得,曲线为,当直线的斜率不存在时,直线,不合题意;当直线的斜率存在时,设,必要性:若M,N,F三点共线,可设直线即,由直线与曲线相切可得,解得,联立可得,所以,所以,所以必要性成立;充分性:设直线即,由直线与曲线相切可得,所以,联立可得,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国手推式移动电站数据监测研究报告
- 2024至2030年中国彩色涂层钢卷行业投资前景及策略咨询研究报告
- 2024至2030年中国庭木户行业投资前景及策略咨询研究报告
- 盆景学知识如何做好一盆盆景
- 2024至2030年中国卸瓶台数据监测研究报告
- 2024至2030年中国冶金控制系统行业投资前景及策略咨询研究报告
- 2024至2030年中国交流耐电压测试仪数据监测研究报告
- 2024年山东省(枣庄、菏泽、临沂、聊城)中考语文试题含解析
- 2024年中国颗粒白土市场调查研究报告
- 2024年中国胶印水性光油市场调查研究报告
- 临床用血执行情况自查表
- 《超市水果陈列标准》
- 2023年02月江西省九江市八里湖新区公开招考50名城市社区工作者(专职网格员)参考题库+答案详解
- 施美美的《绘画之道》与摩尔诗歌新突破
- 七度空间消费者研究总报告(Y-1012)
- 医学英语翻译题汇总
- 外研上册(一起)六年级知识汇总
- 解析人体的奥秘智慧树知到答案章节测试2023年浙江中医药大学
- 湘西名人-贺龙综述
- 剑桥国际少儿英语Level 3 1 Family matters 课件(共16张PPT)
- S7200西门子手册资料
评论
0/150
提交评论