版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025数学步步高大一轮复习讲义人教A版第七章§7.4空间直线、平面的平行 §7.4空间直线、平面的平行课标要求1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊄α,b⊂α,a∥b))⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行eq\b\lc\\rc\}(\a\vs4\al\co1(a∥α,a⊂β,α∩β=b))⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊂β,b⊂β,a∩b=P,a∥α,b∥α))⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行eq\b\lc\\rc\}(\a\vs4\al\co1(α∥β,α∩γ=a,β∩γ=b))⇒a∥b常用结论1.垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.2.平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.3.垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.4.若α∥β,a⊂α,则a∥β.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的两条直线,则这条直线平行于这个平面.(×)(2)若直线a与平面α内无数条直线平行,则a∥α.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线也相互平行.(×)2.(多选)下列命题中,正确的是()A.平行于同一条直线的两个平面平行B.平行于同一平面的两个平面平行C.平行于同一平面的两直线关系不确定D.两平面平行,一平面内的直线必平行于另一平面答案BCD解析对于A,平行于同一条直线的两个平面也可能相交,故A错误;对于B,平行于同一平面的两个平面平行,故B正确;对于C,平行于同一平面的两直线关系不确定,可以平行、相交,也可以异面,故C正确;对于D,根据两个平面平行的性质定理,两平面平行,一平面内的直线必平行于另一平面,故D正确.3.(必修第二册P139T3改编)α,β是两个平面,m,n是两条直线,下列四个命题中正确的是()A.若m∥n,n∥α,则m∥αB.若m∥α,n⊂α,则m∥nC.若α∥β,m⊂α,则m∥βD.若m∥n,m⊂α,n⊂β,则α∥β答案C解析若m∥n,n∥α,则m∥α或m⊂α,故A不正确;若m∥α,n⊂α,则m∥n或m与n异面,故B不正确;若α∥β,则α与β没有公共点,又因为m⊂α,所以m与β没有公共点,所以m∥β,故C正确;若m∥n,m⊂α,n⊂β,则α∥β或α与β相交,故D不正确.4.如图是长方体被一平面截后得到的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,PD=AD=AB=2,CD=4,E为PC的中点.求证:BE∥平面PAD.证明方法一如图,取PD的中点F,连接EF,FA.由题意知EF为△PDC的中位线,∴EF∥CD,且EF=eq\f(1,2)CD=2.又∵AB∥CD,AB=2,CD=4,∴AB綉EF,∴四边形ABEF为平行四边形,∴BE∥AF.又AF⊂平面PAD,BE⊄平面PAD,∴BE∥平面PAD.方法二如图,延长DA,CB相交于H,连接PH,∵AB∥CD,AB=2,CD=4,∴eq\f(HB,HC)=eq\f(AB,CD)=eq\f(1,2),即B为HC的中点,又E为PC的中点,∴BE∥PH,又BE⊄平面PAD,PH⊂平面PAD,∴BE∥平面PAD.方法三如图,取CD的中点H,连接BH,HE,∵E为PC的中点,∴EH∥PD,又EH⊄平面PAD,PD⊂平面PAD,∴EH∥平面PAD,又由题意知AB綉DH,∴四边形ABHD为平行四边形,∴BH∥AD,又AD⊂平面PAD,BH⊄平面PAD,∴BH∥平面PAD,又BH∩EH=H,BH,EH⊂平面BHE,∴平面BHE∥平面PAD,又BE⊂平面BHE,∴BE∥平面PAD.命题点2直线与平面平行的性质例2如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又PA⊂平面PAHG,平面PAHG∩平面BMD=GH,∴PA∥GH.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图,四边形ABCD为长方形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面PDC∩平面PBE=l.证明:(1)DF∥平面PBE;(2)DF∥l.证明(1)取PB的中点G,连接FG,EG,因为点F为PC的中点,所以FG∥BC,FG=eq\f(1,2)BC,因为四边形ABCD为长方形,所以BC∥AD,且BC=AD,所以DE∥FG,DE=FG,所以四边形DEGF为平行四边形,所以DF∥GE,因为DF⊄平面PBE,GE⊂平面PBE,所以DF∥平面PBE.(2)由(1)知DF∥平面PBE,又DF⊂平面PDC,平面PDC∩平面PBE=l,所以DF∥l.题型二平面与平面平行的判定与性质例3如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1.(2)若平面ABCD∩平面CD1B1=l,证明:B1D1∥l.证明(1)由题设知BB1∥DD1且BB1=DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1∥B1C1∥BC且A1D1=B1C1=BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=l,平面ABCD∩平面A1BD=BD,所以l∥BD,又B1D1∥BD,所以B1D1∥l.思维升华(1)证明面面平行的常用方法①利用面面平行的判定定理.②利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).③利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).(2)当已知两平面平行时,可以得出线面平行,如果要得出线线平行,必须是与第三个平面的交线.跟踪训练2如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.题型三平行关系的综合应用例4如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=eq\f(\r(6),3)a,试在AB上找一点F,使EF∥平面PAD.解如图,在平面PCD内,过点E作EG∥CD交PD于点G,连接AG,在AB上取点F,使AF=EG,因为EG∥CD∥AF,EG=AF,所以四边形FEGA为平行四边形,所以EF∥AG.又AG⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.所以点F即为所求的点.又PA⊥平面ABCD,所以PA⊥BC,又BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.所以PB⊥BC.所以PC2=BC2+PB2=BC2+AB2+PA2.设PA=x,则PC=eq\r(2a2+x2),由PB·BC=PC·BE,得eq\r(a2+x2)·a=eq\r(2a2+x2)·eq\f(\r(6),3)a,所以x=a,即PA=a,所以PC=eq\r(3)a.又CE=eq\r(a2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(6),3)a))2)=eq\f(\r(3),3)a,所以eq\f(PE,PC)=eq\f(2,3),所以eq\f(GE,CD)=eq\f(PE,PC)=eq\f(2,3),即GE=eq\f(2,3)CD=eq\f(2,3)a,所以AF=eq\f(2,3)a.故点F是AB上靠近B点的一个三等分点.思维升华解决面面平行问题的关键点(1)在解决线面、面面平行的判定时,一般遵循从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,绝不可过于“模式化”.(2)解答探索性问题的基本策略是先假设,再严格证明,先猜想再证明是学习和研究的重要思想方法.跟踪训练3(2023·马鞍山模拟)如图,在棱长为a的正方体ABCD-A1B1C1D1中,P,Q分别是棱DD1,AB的中点.(1)若平面PQC与直线AA1交于点R,求eq\f(AR,A1R)的值;(2)若M为棱CC1上一点且CM=λCC1,BM∥平面PQC,求λ的值.解(1)如图所示,因为平面ABB1A1∥平面CDD1C1,且平面ABB1A1∩平面PQC=RQ,平面CDD1C1∩平面PQC=PC,所以RQ∥PC,根据空间等角定理可知,△ARQ∽△DPC,则eq\f(AR,DP)=eq\f(AQ,DC),又DC=a,DP=eq\f(1,2)a,AQ=eq\f(1,2)a,则eq\f(AR,\f(1,2)a)=eq\f(\f(1,2)a,a),即AR=eq\f(1,4)a,A1R=eq\f(3,4)a,所以eq\f(AR,A1R)=eq\f(1,3).(2)取AA1的中点E,则R为AE的中点,连接BE,则BE∥RQ,又RQ⊂平面PCQ,BE⊄平面PCQ,则BE∥平面PCQ.又BM∥平面PCQ,BM,BE⊂平面BME,且BM∩BE=B,所以平面BME∥平面PCQ,设DD1∩平面BME=F,连接EF,FM,由平面BME∥平面PCQ,平面BME∩平面CDD1C1=FM,平面PCQ∩平面CDD1C1=PC,所以FM∥PC,又CM∥PF,则四边形CPFM为平行四边形,同理四边形PREF也是平行四边形,所以CM=PF=ER=eq\f(1,4)a,所以λ=eq\f(CM,CC1)=eq\f(\f(1,4)a,a)=eq\f(1,4).课时精练一、单项选择题1.下列关于线、面的四个命题中不正确的是()A.平行于同一平面的两个平面一定平行B.平行于同一直线的两条直线一定平行C.垂直于同一直线的两条直线一定平行D.垂直于同一平面的两条直线一定平行答案C解析垂直于同一条直线的两条直线不一定平行,可能相交或异面.本题可以以正方体为例证明.2.如图,已知P为四边形ABCD外一点,E,F分别为BD,PD上的点,若EF∥平面PBC,则()A.EF∥PAB.EF∥PBC.EF∥PCD.以上均有可能答案B解析由线面平行的性质定理可知EF∥PB.3.过四棱锥P-ABCD任意两条棱的中点作直线,其中与平面PBD平行的直线有()A.4条B.5条C.6条D.7条答案C解析如图,设E,F,G,H,I,J,M,N为相应棱的中点,则NE∥PB,且NE⊄平面PBD,PB⊂平面PBD,所以NE∥平面PBD,同理可得HE,NH,GF,MF,MG与平面PBD平行,由图可知,其他的任意两条棱的中点的连线与平面PBD相交或在平面PBD内,所以与平面PBD平行的直线有6条.4.(2023·衡水中学调研卷)如图,P为平行四边形ABCD所在平面外一点,E为AD的中点,F为PC上一点,当PA∥平面EBF时,eq\f(PF,FC)等于()A.eq\f(2,3)B.eq\f(1,4)C.eq\f(1,3)D.eq\f(1,2)答案D解析连接AC交BE于点G,连接FG,因为PA∥平面EBF,PA⊂平面PAC,平面PAC∩平面BEF=FG,所以PA∥FG,所以eq\f(PF,FC)=eq\f(AG,GC).又AD∥BC,E为AD的中点,所以eq\f(AG,GC)=eq\f(AE,BC)=eq\f(1,2),所以eq\f(PF,FC)=eq\f(1,2).5.(2024·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则()A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,EB不过点F,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,NE不过点B1,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.6.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是()A.eq\b\lc\[\rc\](\a\vs4\al\co1(1,\f(\r(5),2))) B.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3\r(2),4),\f(\r(5),2)))C.eq\b\lc\[\rc\](\a\vs4\al\co1(\f(\r(5),2),\r(2))) D.[eq\r(2),eq\r(3)]答案B解析如图,取B1C1的中点M,BB1的中点N,连接A1M,A1N,MN,可以证明平面A1MN∥平面AEF,所以点P位于线段MN上.因为A1M=A1N=eq\r(1+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2)=eq\f(\r(5),2),MN=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))2)=eq\f(\r(2),2),所以当点P位于M,N点时,A1P最大,当点P位于MN的中点O时,A1P最小,此时A1O=eq\r(\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(5),2)))2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),4)))2)=eq\f(3\r(2),4),所以eq\f(3\r(2),4)≤|A1P|≤eq\f(\r(5),2),所以线段A1P长度的取值范围是eq\b\lc\[\rc\](\a\vs4\al\co1(\f(3\r(2),4),\f(\r(5),2))).二、多项选择题7.(2023·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是()答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图1,作平面DEF交正方体的棱于点G,连接FG并延长,交AB的延长线于点H,则AB与平面DEF相交于点H,故B错误;图1对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,如图2,连接AC,取AC的中点O,连接OD,图2又D为BC的中点,∴AB∥OD,∵OD与平面DEF相交,∴直线AB与平面DEF相交,故D错误.8.如图,向透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个结论,其中正确的是()A.没有水的部分始终呈棱柱形B.水面EFGH所在四边形的面积为定值C.棱A1D1始终与水面所在的平面平行D.当容器倾斜如图所示时,BE·BF是定值答案ACD解析由题图,显然A正确,B错误;对于C,因为A1D1∥BC,BC∥FG,所以A1D1∥FG且FG⊂平面EFGH,A1D1⊄平面EFGH,所以A1D1∥平面EFGH(水面),故C正确;因为水是定量的(定体积V),所以S△BEF·BC=V,即eq\f(1,2)BE·BF·BC=V,所以BE·BF=eq\f(2V,BC)(定值),故D正确.三、填空题9.如图,α∥β,△PAB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.答案eq\f(5,2)解析∵α∥β,∴CD∥AB,则eq\f(PC,PA)=eq\f(CD,AB),∴AB=eq\f(PA×CD,PC)=eq\f(5×1,2)=eq\f(5,2).10.如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.则四边形EFGH的形状为________.答案矩形解析因为CD∥平面EFGH,CD⊂平面BCD,平面EFGH∩平面BCD=EF,所以CD∥EF.同理HG∥CD,所以EF∥HG.同理HE∥GF,所以四边形EFGH为平行四边形.又因为CD⊥AB,所以HE⊥EF,所以平行四边形EFGH为矩形.11.如图,空间图形A1B1C1-ABC是三棱台,在点A1,B1,C1,A,B,C中取3个点确定平面α,α∩平面A1B1C1=m,且m∥AB,则所取的这3个点可以是________.答案A,B,C1(答案不唯一)解析由空间图形A1B1C1-ABC是三棱台,可得平面ABC∥平面A1B1C1,当平面ABC1为平面α,平面α∩平面A1B1C1=m时,又平面α∩平面ABC=AB,所以由面面平行的性质定理可知m∥AB,所取的这3个点可以是A,B,C1.12.如图甲,在梯形ABCD中,AB∥CD,CD=2AB,E,F分别为AD,CD的中点,以AF为折痕把△ADF折起,使点D不落在平面ABCF内(如图乙),那么在以下3个结论中,正确结论是________.①AF∥平面BCD;②BE∥平面CDF;③CD∥平面BEF.答案①③解析对于①,由题意得AB∥CF,AB=CF,∴四边形ABCF是平行四边形,∴AF∥BC,∵AF⊄平面BCD,BC⊂平面BCD,∴AF∥平面BCD,故①正确;对于②,取DF的中点G,连接EG,CG,∵E是AD的中点,AF∥BC,AF=BC,∴EG=eq\f(1,2)BC,EG∥BC,∴四边形BCGE为梯形,∴直线BE与直线CG相交,∴BE与平面CDF相交,故②错误;对于③,连接AC,交BF于点O,连接OE,∵四边形ABCF是平行四边形,∴O是AC的中点,∴OE∥CD,∵OE⊂平面BEF,CD⊄平面BEF,∴CD∥平面BEF,故③正确.四、解答题13.(2023·全国乙卷)如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=2eq\r(2),PB=PC=eq\r(6),BP,AP,BC的中点分别为D,E,O,点F在AC上,BF⊥AO.(1)求证:EF∥平面ADO;(2)若∠POF=120°,求三棱锥P-ABC的体积.(1)证明设AF=tAC,则eq\o(BF,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AF,\s\up6(→))=(1-t)eq\o(BA,\s\up6(→))+teq\o(BC,\s\up6(→)),eq\o(AO,\s\up6(→))=-eq\o(BA,\s\up6(→))+eq\f(1,2)eq\o(BC,\s\up6(→)),因为BF⊥AO,所以eq\o(BF,\s\up6(→))·eq\o(AO,\s\up6(→))=[(1-t)eq\o(BA,\s\up6(→))+teq\o(BC,\s\up6(→))]·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\o(BA,\s\up6(→))+\f(1,2)\o(BC,\s\up6(→))))=(t-1)eq\o(BA,\s\up6(→))2+eq\f(1,2)teq\o(BC,\s\up6(→))2=4(t-1)+4t=0,解得t=eq\f(1,2),则F为AC的中点,又D,E,O分别为PB,PA,BC的中点,于是EF∥PC,DO∥PC,所以EF∥DO,又EF⊄平面ADO,DO⊂平面ADO,所以EF∥平面ADO.(2)解如图,连接DE,OF,过P作PM垂直于OF,交FO的延长线于点M,因为PB=PC,O是BC中点,所以PO⊥BC,在Rt△PBO中,PB=eq\r(6),BO=eq\f(1,2)BC=eq\r(2),所以PO=eq\r(PB2-OB2)=eq\r(6-2)=2,因为AB⊥BC,OF∥AB,所以OF⊥BC,又PO∩OF=O,PO,OF⊂平面POF,所以BC⊥平面POF,又PM⊂平面POF,所以BC⊥PM,又BC∩FM=O,BC,FM⊂平面ABC,所以PM⊥平面ABC,即三棱锥P-ABC的高为PM,因为∠POF=120°,所以∠POM=60°,所以PM=POsin60°=2×eq\f(\r(3),2)=eq\r(3),又S△ABC=eq\f(1,2)AB·BC=eq\f(1,2)×2×2eq\r(2)=2eq\r(2),所以V三棱锥P-ABC=eq\f(1,3)S△ABC·PM=eq\f(1,3)×2eq\r(2)×eq\r(3)=eq\f(2\r(6),3).14.(2023·宁波模拟)如图,在三棱柱BCF-ADE中,若G,H分别是线段AC,DF的中点.(1)求证:GH∥BF;(2)在线段CD上是否存在一点P,使得平面GHP∥平面BCF?若存在,指出点P的具体位置并证明;若不存在,说明理由.(1)证明连接BD,∵四边形ABCD为平行四边形,由题意可得,G是线段BD的中点,则G,H分别是线段BD,DF的中点,故GH∥BF.(2)解存在,P是线段CD的中点,理由如下:由(1)可知,GH∥BF,GH⊂平面GHP,BF⊄平面GHP,∴BF∥平面GHP,连接PG,PH,∵P,H分别是线段CD,DF的中点,则HP∥CF,HP⊂平面GHP,CF⊄平面GHP,∴CF∥平面GHP,BF∩CF=F,BF,CF⊂平面BCF,故平面GHP∥平面BCF.15.(多选)如图1,在正方形ABCD中,点E为线段BC上的动点(不含端点),将△ABE沿AE翻折,使得二面角B-AE-D为直二面角,得到图2所示的四棱锥B-AECD,点F为线段BD上的动点(不含端点),则在四棱锥B-AECD中,下列说法正确的有()A.B,E,C,F四点不共面B.存在点F,使得CF∥平面BAEC.三棱锥B-ADC的体积为定值D.存在点E使得直线BE与直线CD垂直答案AB解析对于A,因为点B在平面AECD外,点D在平面AECD内,直线EC在平面AECD内,直线EC不过点D,所以直线BD与EC是异面直线,即直线BF与EC是异面直线,所以B,E,C,F四点不共面,故A正确;对于B,如图,当点F为线段BD的中点,EC=eq\f(1,2)AD时,直线CF∥平面BAE,证明如下:取AB的中点G,连接GE,GF,则EC∥FG且EC=FG,所以四边形ECFG为平行四边形,所以FC∥EG,又因为EG⊂平面BAE,则直线CF与平面BAE平行,故B正确;对于C,在三棱锥B-ADC中,因为点E的移动会导致点B到平面ACD的距离发生变化,所以三棱锥B-ADC的体积不是定值,故C不正确;对于D,过D作DH⊥AE于H,因为平面BAE⊥平面AECD,平面BAE∩平面AECD=AE,所以DH⊥平面BAE,所以DH⊥BE,若存在点E使得直线BE与直线CD垂直,DH⊂平面AECD,且DC⊂平面AECD,DH∩DC=D,所以BE⊥平面AECD,所以BE⊥AE,与△ABE是以B为直角的三角形矛盾,所以不存在点E使得直线BE与直线CD垂直,故D不正确.16.已知正方体ABCD-A1B1C1D1的棱长为2,E为CD的中点,且点P在四边形BCC1B1内部及其边界上运动,(1)若EP∥平面BDD1B1,则动点P的轨迹长度为______________;(2)若AP与AB的夹角为30°,则动点P的轨迹长度为______________.答案(1)2(2)eq\f(\r(3)π,3)解析如图,分别取BC,B1C1的中点F,G,连接EF,FG,EG,则四边形BFGB1为平行四边形,所以BB1∥FG,因为E为CD的中点,所以EF∥BD,因为EF,FG⊄平面BDD1B1,BD,BB1⊂平面BDD1B1,所以EF∥平面BDD1B1,FG∥平面BDD1B1,因为EF∩FG=F,所以平面EFG∥平面BDD1B1,(1)因为平面EFG∩平面BCC1B1=FG,且点P在四边形BCC1B1内部及其边界上运动,EP∥平面BDD1B1,所以点P的轨迹是FG,因为FG=BB1=2,所以动点P的轨迹长度为2.(2)因为AB⊥平面BCC1B1,BP⊂平面BCC1B1,所以AB⊥BP,在Rt△ABP中,AB=2,∠BAP=30°,则tan∠BAP=eq\f(BP,AB)=eq\f(\r(3),3),所以BP=eq\f(\r(3),3)AB=eq\f(2\r(3),3),所以点P的轨迹是以B为圆心,eq\f(2\r(3),3)为半径的一段弧,且圆心角为eq\f(π,2),所以动点P的轨迹长度为eq\f(π,2)×eq\f(2\r(3),3)=eq\f(\r(3)π,3).§7.5空间直线、平面的垂直课标要求1.理解空间中直线与直线、直线与平面、平面与平面的垂直关系.2.掌握直线与平面、平面与平面垂直的判定与性质,并会简单应用.知识梳理1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n))⇒l⊥α性质定理垂直于同一个平面的两条直线平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))⇒a∥b2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是90°;一条直线和平面平行,或在平面内,我们说它们所成的角是0°.(2)范围:eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:如图,在二面角α-l-β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角.(3)二面角的范围:[0,π].4.平面与平面垂直(1)平面与平面垂直的定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(a⊂α,a⊥β))⇒α⊥β性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,α∩β=a,l⊥a,l⊂β))⇒l⊥α常用结论1.三垂线定理平面内的一条直线如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直.2.三垂线定理的逆定理平面内的一条直线如果和穿过该平面的一条斜线垂直,那么它也和这条斜线在该平面内的射影垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若直线l与平面α内的两条直线都垂直,则l⊥α.(×)(2)若直线a⊥α,b⊥α,则a∥b.(√)(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.(×)(4)若α⊥β,a⊥β,则a∥α.(×)2.(必修第二册P163习题8.6T3改编)(多选)下列命题中不正确的是()A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线aB.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面βC.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线aD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案ABD解析若直线a垂直于平面α,则直线a垂直于平面α内的所有直线,故C正确,其他选项均不正确.3.(2023·石嘴山模拟)如图,PA是圆柱的母线,AB是圆柱的底面直径,C是圆柱底面圆周上的任意一点(不与A,B重合),则下列说法错误的是()A.PA⊥平面ABCB.BC⊥平面PACC.AC⊥平面PBCD.三棱锥P-ABC的四个面都是直角三角形答案C解析因为PA是圆柱的母线,AB是圆柱的底面直径,C是圆柱底面圆周上的任意一点(不与A,B重合),则PA⊥平面ABC,故A正确;而BC⊂平面ABC,则PA⊥BC,又AC⊥BC,PA∩AC=A,PA,AC⊂平面PAC,则有BC⊥平面PAC,故B正确;由A知,△PAB,△PAC都是直角三角形,由B知,△ABC,△PBC都是直角三角形,故D正确;假定AC⊥平面PBC,PC⊂平面PBC,则AC⊥PC,即∠PCA=90°,而在△PAC中∠PAC=90°,矛盾,所以AC⊥平面PBC不正确,故C错误.4.过平面外一点P的斜线段是过这点的垂线段的eq\f(2\r(3),3)倍,则斜线与平面α所成的角是________.答案eq\f(π,3)解析如图,连接AB,由PB⊥α,知∠PAB是线段PA与平面α所成的角,在Rt△PAB中,因为PA=eq\f(2\r(3),3)PB,所以sin∠PAB=eq\f(PB,PA)=eq\f(\r(3),2),∠PAB∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(π,2))),所以∠PAB=eq\f(π,3),即线段PA与平面α所成的角为eq\f(π,3).题型一直线与平面垂直的判定与性质例1(2024·娄底模拟)如图,在三棱柱ABC-A1B1C1中,点B1在底面ABC内的射影恰好是点C.(1)若点D是AC的中点,且DA=DB,证明:AB⊥CC1;(2)已知B1C1=2,B1C=2eq\r(3),求△BCC1的周长.(1)证明∵点B1在底面ABC内的射影是点C,∴B1C⊥平面ABC,∵AB⊂平面ABC,∴B1C⊥AB.在△ABC中,DA=DB=DC,∴BC⊥AB,∵BC∩B1C=C,BC,B1C⊂平面BCC1B1,∴AB⊥平面BCC1B1,∵CC1⊂平面BCC1B1,∴AB⊥CC1.(2)解如图,延长BC至点E,使BC=CE,连接C1E,则B1C1綉CE,四边形B1CEC1为平行四边形,则C1E綉B1C.由(1)知B1C⊥平面ABC,∴C1E⊥平面ABC,∵CE,BE⊂平面ABC,∴C1E⊥CE,C1E⊥BE,∵C1E=B1C=2eq\r(3),CE=BC=B1C1=2,BE=4,∴CC1=eq\r(CE2+C1E2)=4,BC1=eq\r(BE2+C1E2)=2eq\r(7),∴△BCC1的周长为2+4+2eq\r(7)=6+2eq\r(7).思维升华证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.跟踪训练1如图,已知正方体ABCD-A1B1C1D1.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.证明(1)如图,连接A1C1.因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又因为CC1∩A1C1=C1,A1C1,CC1⊂平面A1C1C,所以B1D1⊥平面A1C1C.又因为A1C⊂平面A1C1C,所以A1C⊥B1D1.(2)如图,连接B1A,AD1.因为B1C1=AD,B1C1∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1,因为MN⊥C1D,所以MN⊥AB1.又因为MN⊥B1D1,AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,所以MN⊥平面AB1D1.由(1)知A1C⊥B1D1.同理可得A1C⊥AB1.又因为AB1∩B1D1=B1,AB1,B1D1⊂平面AB1D1,所以A1C⊥平面AB1D1.所以MN∥A1C.题型二平面与平面垂直的判定与性质例2(2023·全国甲卷)如图,在三棱柱ABC-A1B1C1中,A1C⊥平面ABC,∠ACB=90°.(1)证明:平面ACC1A1⊥平面BB1C1C;(2)设AB=A1B,AA1=2,求四棱锥A1-BB1C1C的高.(1)证明因为A1C⊥平面ABC,BC⊂平面ABC,所以A1C⊥BC,又因为∠ACB=90°,即AC⊥BC,因为A1C,AC⊂平面ACC1A1,A1C∩AC=C,所以BC⊥平面ACC1A1,又因为BC⊂平面BB1C1C,所以平面ACC1A1⊥平面BB1C1C.(2)解如图,过点A1作A1O⊥CC1于点O.因为平面ACC1A1⊥平面BB1C1C,平面ACC1A1∩平面BB1C1C=CC1,A1O⊂平面ACC1A1,所以A1O⊥平面BB1C1C,所以四棱锥A1-BB1C1C的高为A1O.因为A1C⊥平面ABC,AC,BC⊂平面ABC,所以A1C⊥BC,A1C⊥AC,在Rt△ABC与Rt△A1BC中,因为A1B=AB,BC=BC,所以Rt△ABC≌Rt△A1BC,所以A1C=AC.设A1C=AC=x,则A1C1=x,所以O为CC1中点,OC1=eq\f(1,2)AA1=1,又因为A1C⊥AC,所以A1C2+AC2=AAeq\o\al(2,1),即x2+x2=22,解得x=eq\r(2),所以A1O=eq\r(A1C\o\al(2,1)-OC\o\al(2,1))=eq\r(\r(2)2-12)=1,所以四棱锥A1-BB1C1C的高为1.思维升华(1)判定面面垂直的方法①面面垂直的定义.②面面垂直的判定定理.(2)面面垂直性质的应用①面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.跟踪训练2(2023·邯郸模拟)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥平面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥平面ABCD;(2)平面BEF∥平面PAD;(3)平面BEF⊥平面PCD.证明(1)∵平面PAD⊥平面ABCD,且PA⊂平面PAD,PA⊥AD,平面PAD∩平面ABCD=AD,∴PA⊥平面ABCD.(2)∵AB∥CD,CD=2AB,E是CD的中点,∴AB∥DE,且AB=DE,∴四边形ABED是平行四边形,∴AD∥BE,∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD,∵E和F分别是CD和PC的中点,∴EF∥PD,∵EF⊄平面PAD,PD⊂平面PAD,∴EF∥平面PAD,∵BE∩EF=E,BE,EF⊂平面BEF,∴平面BEF∥平面PAD.(3)∵AB⊥AD,∴平行四边形ABED是矩形,∴BE⊥CD,AD⊥CD,由(1)知PA⊥平面ABCD,∴PA⊥CD,∵PA∩AD=A,∴CD⊥平面PAD,∴CD⊥PD,∵E和F分别是CD和PC的中点,∴PD∥EF,∴CD⊥EF,又∵BE∩EF=E,∴CD⊥平面BEF,∵CD⊂平面PCD,∴平面BEF⊥平面PCD.题型三垂直关系的综合应用例3如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.(1)试判断不论点P在AD1上的任何位置,是否都有平面BPA⊥平面AA1D1D,并证明你的结论;(2)当P为AD1的中点时,求异面直线AA1与B1P所成角的余弦值;(3)求PB1与平面AA1D1D所成角的正切值的最大值.解(1)是.∵BA⊥平面AA1D1D,BA⊂平面BPA,∴平面BPA⊥平面AA1D1D,∴无论点P在AD1上的任何位置,都有平面BPA⊥平面AA1D1D.(2)过点P作PE⊥A1D1,垂足为E,连接B1E,如图,则PE∥AA1,∴∠B1PE是异面直线AA1与B1P所成的角.在Rt△AA1D1中,∵∠AD1A1=60°,∴∠A1AD1=30°,∴A1B1=A1D1=eq\f(1,2)AD1=2,∴A1E=eq\f(1,2)A1D1=1,AA1=eq\r(3)A1D1=2eq\r(3),∴PE=eq\f(1,2)AA1=eq\r(3),B1E=eq\r(A1B\o\al(2,1)+A1E2)=eq\r(5),∴在Rt△B1PE中,B1P=eq\r(B1E2+PE2)=2eq\r(2),∴cos∠B1PE=eq\f(PE,B1P)=eq\f(\r(3),2\r(2))=eq\f(\r(6),4),∴异面直线AA1与B1P所成角的余弦值为eq\f(\r(6),4).(3)由(1)知,B1A1⊥平面AA1D1D,∴∠B1PA1是PB1与平面AA1D1D所成的角,∴tan∠B1PA1=eq\f(A1B1,A1P)=eq\f(2,A1P),∴当A1P最小时,tan∠B1PA1最大,这时A1P⊥AD1,A1P=eq\f(A1D1·AA1,AD1)=eq\r(3),得tan∠B1PA1=eq\f(2\r(3),3),即PB1与平面AA1D1D所成角的正切值的最大值为eq\f(2\r(3),3).cosθ=cosθ1·cosθ2的应用已知AO是平面α的斜线,如图,A是斜足,OB⊥α,B是垂足,则直线AB是斜线AO在平面α内的射影,设AC是α内的任一过点A的直线,且BC⊥AC,C为垂足,又设AO与直线AB所成的角为θ1,AB与AC所成的角是θ2,AO与AC所成的角为θ,则cosθ=cosθ1·cosθ2.典例如图,PA是平面α的斜线,∠BAC在平面α内,且∠BAC=90°,又∠PAB=∠PAC=60°,则PA与平面α所成的角为________.答案45°解析作P在α内的正射影O,则O在∠BAC的平分线上,∠PAO为PA与平面α所成的角,所以cos∠PAC=cos∠PAO·cos∠OAC,所以cos60°=cos∠PAO·cos45°,所以cos∠PAO=eq\f(\r(2),2),故∠PAO=45°,所以PA与平面α所成的角为45°.思维升华(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证.跟踪训练3(多选)如图,两个共底面的正四棱锥组成一个八面体E-ABCD-F,且该八面体的各棱长均相等,则()A.异面直线AE与BC所成的角为60°B.BD⊥CEC.平面ABF∥平面CDED.直线AE与平面BDE所成的角为60°答案ABC解析因为BC∥AD,所以∠EAD(或其补角)即为异面直线AE与BC所成的角,又AD=DE=AE,所以∠EAD=60°,即异面直线AE与BC所成的角为60°,A正确;连接AC交BD于点O,则点O为正方形ABCD的中心,连接EF,根据正四棱锥的性质可知EF必过点O,且OE⊥平面ABCD,所以OE⊥BD,又BD⊥AC,OE∩AC=O,OE,AC⊂平面ACE,所以BD⊥平面ACE,又CE⊂平面ACE,所以BD⊥CE,B正确;由对称性可知OE=OF,OA=OC,所以四边形AFCE为平行四边形,所以AF∥CE,又AF⊄平面CDE,CE⊂平面CDE,所以AF∥平面CDE,同理BF∥平面CDE,又AF∩BF=F,AF,BF⊂平面ABF,所以平面ABF∥平面CDE,C正确;由AE=AF,OE=OF,得AO⊥EF,在正方形ABCD中,AO⊥BD,又BD∩EF=O,所以AO⊥平面BEDF,所以∠AEO即为直线AE与平面BDE所成的角,设该八面体的棱长为2,则AO=eq\f(1,2)AC=eq\f(1,2)eq\r(AB2+BC2)=eq\r(2),所以EO=eq\r(AE2-AO2)=eq\r(2)=AO,所以∠AEO=45°,D错误.课时精练一、单项选择题1.若平面α,β满足α⊥β,α∩β=l,P∈α,P∉l,则下列命题中是假命题的为()A.过点P垂直于平面α的直线平行于平面βB.过点P垂直于直线l的直线在平面α内C.过点P垂直于平面β的直线在平面α内D.过点P且在平面α内垂直于l的直线必垂直于平面β答案B解析由于过点P垂直于平面α的直线必平行于平面β内垂直于交线的直线,则直线平行于平面β,因此A是真命题;过点P垂直于直线l的直线有可能垂直于平面α,不一定在平面α内,因此B是假命题;根据面面垂直的性质定理知,选项C,D是真命题.2.若P是△ABC所在平面外一点,且PA⊥BC,PB⊥AC,则点P在△ABC所在平面内的射影O是△ABC的()A.内心 B.外心C.重心 D.垂心答案D解析如图所示,因为PA⊥BC,PO⊥BC,且PA∩PO=P,所以BC⊥平面PAO,则BC⊥OA,同理得OB⊥AC,所以O是△ABC的垂心.3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC内的射影H必在()A.直线AB上 B.直线BC上C.直线AC上 D.△ABC内部答案A解析连接AC1(图略),由AC⊥AB,AC⊥BC1,AB∩BC1=B,得AC⊥平面ABC1.∵AC⊂平面ABC,∴平面ABC1⊥平面ABC.∴C1在平面ABC内的射影H必在平面ABC1与平面ABC的交线AB上.4.(2023·景德镇模拟)已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题错误的是()A.若m⊥α,n⊥β,且α∥β,则m∥nB.若m⊥α,n∥β,且α∥β,则m⊥nC.若α∥β,m⊂α,n⊂β,则m∥nD.若m⊥α,n⊥β,且α⊥β,则m⊥n答案C解析由n⊥β且α∥β,可得n⊥α,而垂直于同一个平面的两条直线相互平行,故A正确;由于α∥β,m⊥α,所以m⊥β,又因为n∥β,则m⊥n,故B正确;若α∥β,m⊂α,n⊂β,则m与n平行或异面,故C错误;如图,设α∩β=l,在平面β内作直线c⊥l,又因为α⊥β,则c⊥α,又m⊥α,所以m∥c,因为n⊥β,c⊂β,所以n⊥c,从而有m⊥n,故D正确.5.刘徽注《九章算术·商功》“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”如图1解释了由一个长方体得到“堑堵”“阳马”“鳖臑”的过程.堑堵是底面为直角三角形的直棱柱;阳马是一条侧棱垂直于底面且底面为矩形的四棱锥;鳖臑是四个面都为直角三角形的四面体.在如图2所示由正方体ABCD-A1B1C1D1得到的堑堵ABC-A1B1C1中,当点P在下列三个位置:A1A中点,A1B中点,A1C中点时,分别形成的四面体P-ABC中,鳖臑的个数为()A.0B.1C.2D.3答案C解析设正方体的棱长为a,则由题意知,A1C1=AC=eq\r(2)a,A1B=eq\r(2)a,A1C=eq\r(3)a,当点P为A1A的中点时,因为PA⊥平面ABC,则∠PAC=∠PAB=90°,∠ABC=90°.由BC⊥平面PAB,得BC⊥PB,即∠PBC=90°,则△PAB,△PAC,△ABC,△PBC都是直角三角形,即此时四面体P-ABC是鳖臑;当点P为A1B的中点时,因为BC⊥平面ABB1A1,所以BC⊥PB,BC⊥AB,所以△PBC,△ABC为直角三角形.因为四边形ABB1A1是正方形,所以AP⊥BP,则△PAB是直角三角形,又AP⊥BC,BP∩BC=B,所以AP⊥平面PBC,又PC⊂平面PBC,所以AP⊥PC,所以△PAC是直角三角形,则此时四面体P-ABC是鳖臑;当点P为A1C的中点时,此时PA=PC=eq\f(1,2)A1C=eq\f(\r(3)a,2),又AC=eq\r(2)a,由勾股定理可知,△PAC不是直角三角形,则此时四面体P-ABC不是鳖臑.6.在正三棱锥A-BCD中,二面角A-BC-D的平面角为60°,则AC与平面BCD所成角的正切值为()A.eq\r(3)B.eq\f(\r(3),3)C.eq\f(\r(3),2)D.1答案C解析取BC的中点为E,△BCD的中心为G,连接AE,DE,CG,AG,因为AB=AC,BD=CD,则AE⊥BC,DE⊥BC,可得二面角A-BC-D的平面角为∠AED,即∠AED=60°,因为三棱锥A-BCD为正三棱锥,则AG⊥平面BCD,且DE,CG⊂平面BCD,则AG⊥DE,AG⊥CG,可得AG=eq\r(3)EG,CG=DG=2EG,由AG⊥平面BCD,可知AC与平面BCD所成的角为∠ACG,所以tan∠ACG=eq\f(AG,CG)=eq\f(\r(3)EG,2EG)=eq\f(\r(3),2).二、多项选择题7.在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点E,F分别是棱PA,PB的中点,则下列结论正确的是()A.CD⊥PDB.AB⊥PCC.平面PBD⊥平面PACD.E,F,C,D四点共面答案AD解析如图所示,因为PA⊥平面ABCD,所以PA⊥CD,又因为底面ABCD是矩形,所以CD⊥AD,又PA∩AD=A,所以CD⊥平面PAD,所以CD⊥PD,故A正确;因为CD∥AB,CD⊥平面PAD,所以AB⊥平面PAD,又PC∩平面PAD=P,所以AB与PC不垂直,故B错误;因为底面ABCD是矩形,所以BD与AC不一定垂直,则BD与平面PAC不一定垂直,所以平面PBD与平面PAC不一定垂直,故C错误;因为点E,F分别是棱PA,PB的中点,所以EF∥AB,又AB∥CD,所以EF∥CD,所以E,F,C,D四点共面,故D正确.8.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,BC=CD=eq\f(1,2)AB=2,E为AB的中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2eq\r(3).则下列说法正确的有()A.CD⊥平面EDPB.四棱锥P-EBCD外接球的体积为4eq\r(3)πC.二面角P-CD-B的大小为eq\f(π,4)D.直线PC与平面EDP所成角的正切值为eq\r(2)答案ABC解析对于A,∵E为AB的中点,∴BE=CD,BE∥CD,∴四边形EBCD为平行四边形,又AB⊥BC,∴四边形EBCD为矩形,∴CD⊥DE.∵PD=AD=eq\r(22+22)=2eq\r(2),CD=2,PC=2eq\r(3),∴PD2+CD2=PC2,∴CD⊥PD,又PD∩DE=D,PD,DE⊂平面EDP,∴CD⊥平面EDP,A正确;对于B,∵BC∥DE,AB⊥BC,∴AE⊥DE,即PE⊥DE,∵CD⊥平面EDP,PE⊂平面EDP,∴CD⊥PE,又CD∩DE=D,CD,DE⊂平面EBCD,∴PE⊥平面EBCD,∵矩形EBCD的外接圆半径r=eq\f(1,2)×eq\r(22+22)=eq\r(2),∴四棱锥P-EBCD的外接球半径R=eq\r(r2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)PE))2)=eq\r(2+1)=eq\r(3),∴四棱锥P-EBCD外接球的体积V=eq\f(4,3)πR3=4eq\r(3)π,B正确;对于C,∵CD⊥平面EDP,PD⊂平面EDP,∴PD⊥CD;又DE⊥CD,∴二面角P-CD-B的平面角为∠PDE,∵PE⊥DE,PE=DE=2,∴∠PDE=eq\f(π,4),∴二面角P-CD-B的大小为eq\f(π,4),C正确;对于D,∵CD⊥平面EDP,∴∠CPD即为直线PC与平面EDP所成的角,∵CD⊥PD,PD=2eq\r(2),CD=2,∴tan∠CPD=eq\f(CD,PD)=eq\f(2,2\r(2))=eq\f(\r(2),2),即直线PC与平面EDP所成角的正切值为eq\f(\r(2),2),D错误.三、填空题9.在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面有________个.答案2解析在正方体中,侧棱都和底面垂直,故在正方体ABCD-A1B1C1D1的六个面中,与AA1垂直的平面有平面ABCD和平面A1B1C1D1,共两个.10.埃及胡夫金字塔是古代世界建筑奇迹之一,其形状可视为一个正四棱锥,已知该金字塔的塔高与底面边长的比满足黄金比例,即比值约为eq\f(\r(5)-1,2),则它的侧棱与底面所成角的正切值约为________.答案eq\f(\r(10)-\r(2),2)解析画出如图所示示意图,设底面边长为a,则塔高EF=eq\f(\r(5)-1,2)a,AF=eq\f(1,2)AC=eq\f(\r(2),2)a,所以侧棱与底面所成的角∠EAF的正切值为eq\f(EF,AF)=eq\f(\f(\r(5)-1,2)a,\f(\r(2),2)a)=eq\f(\r(10)-\r(2),2).11.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或MB⊥PC)解析连接AC,因为底面ABCD各边都相等,所以AC⊥BD,因为PA⊥底面ABCD,BD⊂底面ABCD,所以PA⊥BD,又AC∩PA=A,AC,PA⊂平面PAC,所以BD⊥平面PAC,因为PC⊂平面PAC,所以BD⊥PC.所以当DM⊥PC(或BM⊥PC)时,PC与平面MBD内两条相交直线垂直,即有PC⊥平面MBD,而PC⊂平面PCD,所以平面MBD⊥平面PCD.12.在长方体ABCD-A1B1C1D1中,已知AB=2,BC=t,若在线段AB上存在点E,使得EC1⊥ED,则实数t的取值范围是________.答案(0,1]解析因为C1C⊥平面ABCD,ED⊂平面ABCD,可得C1C⊥ED,由EC1⊥ED,EC1∩C1C=C1,EC1,C1C⊂平面ECC1,可得ED⊥平面ECC1,所以ED⊥EC,在矩形ABCD中,设AE=a,0≤a≤2,则BE=2-a,由∠DEA+∠CEB=90°,可得tan∠DEA·tan∠CEB=eq\f(AD,AE)·eq\f(CB,BE)=eq\f(t2,a2-a)=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提前施工委托书
- 2025年天津b2考货运资格证要多久
- 《型翻转床推广方案》课件
- 2025年山西货运从业资格证考试模拟题库答案大全
- 2025年牡丹江货运上岗证考试题库答案
- 2025年安顺货运从业资格证考题
- 2025年安阳a2驾驶证货运从业资格证模拟考试
- 仿古住宅小区开发协议
- 制造业工伤理赔调解协议
- 公路建设项目招投标难点分析
- “僵尸型”社会组织注销登记表
- 住院HIS系统流程图
- 采购部年终总结计划PPT模板
- 智能交互式无纸化会议系统设计方案
- 机械制造工艺学课程设计
- 配电箱安装施工方案
- 湘少版英语四年级上册Unit12Petercanjumphigh单元测试题(含答案及)
- 早产儿知情同意书
- 手术质量与安全监测分析制度
- 2020年事业单位招聘考试《气象专业基础知识》真题库及答案1000题
- 模型构建的原则和主要步骤
评论
0/150
提交评论