2023届福建省龙岩市北城中学数学九上期末统考试题含解析_第1页
2023届福建省龙岩市北城中学数学九上期末统考试题含解析_第2页
2023届福建省龙岩市北城中学数学九上期末统考试题含解析_第3页
2023届福建省龙岩市北城中学数学九上期末统考试题含解析_第4页
2023届福建省龙岩市北城中学数学九上期末统考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗2.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.53.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内4.下列事件中是随机事件的是()A.校运会上立定跳远成绩为10米B.在只装有5个红球的袋中,摸出一个红球C.慈溪市明年五一节是晴天D.在标准大气压下,气温3°C时,冰熔化为水5.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4 B.1:2 C.1:16 D.1:86.下列对抛物线y=-2(x-1)2+3性质的描写中,正确的是(

)A.开口向上 B.对称轴是直线x=1 C.顶点坐标是(-1,3) D.函数y有最小值7.如图,某幢建筑物从2.25米高的窗口用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点离墙1米,离地面3米,则水流下落点离墙的距离是()A.2.5米 B.3米 C.3.5米 D.4米8.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.9.为了测量某沙漠地区的温度变化情况,从某时刻开始记录了12个小时的温度,记时间为(单位:)温度为(单位:).当时,与的函数关系是,则时该地区的最高温度是()A. B. C. D.10.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是()A. B. C. D.11.如图,已知a∥b∥c,直线AC,DF与a、b、c相交,且AB=6,BC=4,DF=8,则DE=(

)A.12 B. C. D.312.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根二、填空题(每题4分,共24分)13.在矩形中,,,绕点顺时针旋转到,连接,则________.14.已知∽,若周长比为4:9,则_____________.15.分解因式:___.16.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.17.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.18.已知x1、x2是关于x的方程x2+4x5=0的两个根,则x1x2=_____.三、解答题(共78分)19.(8分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x20.(8分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.①若是以为直角顶点的等腰直角三角形,求的面积;②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)21.(8分)计算:|tan30°-l|+2sin60o-tan45°.22.(10分)已知反比例函数,(k为常数,).(1)若点在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围.23.(10分)如图1,直线y=2x+2分别交x轴、y轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△DEC′与△BOC的重叠部分面积为S,点D的运动时间为t(秒),S与t的函数图象如图2所示.(1)VD,C坐标为;(2)图2中,m=,n=,k=.(3)求出S与t之间的函数关系式(不必写自变量t的取值范围).24.(10分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.25.(12分)如图在完全相同的四张卡片中,分别画出边长相等的正方形和等边三角形,然后放在盒子里搅匀,闭上眼睛任取两张,看纸片上的图形能拼成长方形或拼成菱形或拼成小房子,预测一下能拼成“小房子”的概率有多大.26.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:由题意得,解得:.故选B.2、D【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:,∴,由抛物线与轴的交点可知:,∴,∴,故①正确;②抛物线与轴只有一个交点,∴,∴,故②正确;③令,∴,∵,∴,∴,∴,∵,∴,故③正确;④由图象可知:令,即的解为,∴的根为,故④正确;⑤∵,∴,故⑤正确;故选D.【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.3、A【解析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选A.【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.4、C【分析】根据随机事件的定义,就是可能发生也可能不发生的事件进行判断即可.【详解】解:A.“校运会上立定跳远成绩为10米”是不可能事件,因此选项A不符合题意;B.“在只装有5个红球的袋中,摸出一个红球”是必然事件,因此选项B不符合题意;C.“慈溪市明年五一节是晴天”可能发生,也可能不发生,是随机事件,因此选项C符合题意;D.“在标准大气压下,气温3°C时,冰熔化为水”是必然事件,因此选项D不符合题意;故选:C.【点睛】本题考查了随机事件、必然事件、不可能事件的定义,理解随机事件的定义是解题的关键.5、C【分析】根据相似三角形的面积的比等于相似比的平方可得答案.【详解】解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选C.【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.6、B【分析】由抛物线的解析式可求得开口方向、对称轴及顶点坐标,再逐一进行判断即可.【详解】解:A、∵−2<0,∴抛物线的开口向下,故A错误,不符合题意;B、抛物线的对称轴为:x=1,故B正确,符合题意;C、抛物线的顶点为(1,3),故C错误,不符合题意;D、因为开口向下,故该函数有最大值,故D错误,不符合题意.故答案为:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,顶点坐标为(h,k),对称轴为x=h.7、B【分析】由题意可以知道M(1,2),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴抛物线的解析式为:y=-0.1(x-1)2+2.当y=0时,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.8、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【点睛】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.9、D【分析】利用配方法求最值.【详解】解:∵a=-1<0∴当t=5时,y有最大值为36故选:D【点睛】本题考查配方法求最值,掌握配方法的方法正确计算是本题的解题关键.10、C【分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【详解】解:函数大致图象如图,∵k>0,则图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x2<0<x3,∴y2<y1<y3.故选C.【点睛】本题考查了反比例函数图象上点的坐标特征.11、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故选C.【点睛】本题考查了平行线分线段成比例定理,熟练掌握定理内容是关键:三条平行线截两条直线,所得的对应线段成比例.12、D【解析】∵△=>0,∴方程有两个不相等的实数根.故选D.二、填空题(每题4分,共24分)13、【分析】根据勾股定理求出BD,再根据等腰直角三角形的性质,BF=BD计算即可.【详解】解:∵四边形ABCD是矩形,

∴AD=BC=8,∠A=90°,

∵AB=6,

∴BD===10,

∵△BEF是由△ABD旋转得到,

∴△BDF是等腰直角三角形,

∴DF=BD=10,

故答案为10.【点睛】本题考查旋转的性质、矩形的性质、勾股定理等知识,解题的关键是灵活运用勾股定理解决问题,属于中考常考题型.14、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,∴.故答案为:4:1.【点睛】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.15、.【分析】直接提取公因式即可【详解】解:.故答案为:16、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【详解】解:连接OD,过点BH⊥x轴,①沿着EA翻折,如图1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四边形FENA是菱形,∴∠FAN=90°,∴四边形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿着AF翻折,如图2:∴AE=EF,∴B与F重合,∴∠BDE=45°,∵四边形ABDE是平行四边形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿着EF翻折,如图3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,过点F作FM⊥x轴,过点D作DN⊥x轴,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;综上所述:OE的长为6﹣或6或9﹣3,故答案为6﹣或6或9﹣3.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.17、1.【解析】试题分析:根据题目中的条件易证△ABP∽△CDP,由相似三角形对应边的比相等可得,即,解得CD=1m.考点:相似三角形的应用.18、-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x的方程x2+1x5=0的两个根,∴x1x2=-=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1x2=-.三、解答题(共78分)19、(1)x1=,x2=;(2)x1=1,x2=;(3)x1=,x2=2;(4)x1=,x2=【分析】(1)两边同时除以3,再用直接开平方法解得;(2)移项,方程左边可以提取公因式(x-1),利用因式分解法求解得;(3)先把方程化为两个完全平式的形式,再用因式分解法求出x的值即可.(4)方程整理为一般形式,计算出根的判别式的值大于0,代入求根公式即可求出解;【详解】解:(1)两边同时除以3得:(2x+1)2=36,开平方得:2x+1=±6,x1=,x2=;(2)移项得,3x(x-1)-2+2x=0,

因式分解得,(x-1)(3x+2)=0,

解得,x1=1,x2=;(3)因式分解得:(x-3)2=(5-2x)2,

移项,得(x-3)2-(5-2x)2=0,

因式分解得(x-3-5+2x)(x-3+5-2x)=0,

(3x-8)(-x+2)=0,

解得x1=,x2=2;(4)x(2x-4)=5-8x,

方程整理得:2x2+4x-5=0,

这里a=2,b=4,c=-5,

∵△=16+40=56,∴x=,则x1=,x2=.【点睛】本题考查的是解一元二次方程,熟知用直接开平方法、公式法及因式分解法解一元二次方程是解答此题的关键.20、(1);(2)①或.②1或2.【解析】(1)设的坐标分别为,根据三角形的面积,构建方程即可解决问题.

(2)①分两种情形画出图形:当点P在线段BM上,当点P在线段BM的延长线上时,分别利用全等三角形的性质求解即可.

②当点Q是等腰三角形的直角顶点时,分两种情形分别求解即可.【详解】解:(1))∵四边形OACD是正方形,边长为3,

∴点B的纵坐标为3,点E的横坐标为3,

∵反比例函数的图象交AC,CD于点B,E,设的坐标分别为.∵S△OBE=4,可得,.解得,,(舍).所以,反比例函数的解析式为.(2))①如图1中,设直线m交OD于M.由(1)可知B(1,3),AB=1,BC=2,

当PC=PQ,∠CPQ=90°时,

∵∠CBP=∠PMQ=∠CPQ=90°,

∴∠CPB+∠BCP=90°,∠CPB+∠PQM=90°,

∴∠PCB=∠MPQ,∵PC=PQ,

∴△CBP≌△PMQ(AAS),

∴BC=PM=2,PB=MQ=1,

∴PC=PQ=∴S△PCQ=如图2中,当PQ=PC,∠CPQ=90°,同法可得△CBP≌△PMQ(AAS),

∴PM=BC=2,OM=PB=1,

∴PC=PQ=,∴S△PCQ=.所以,的面积为或.②当点Q是等腰三角形的直角顶点时,同法可得CQ=PQ=,此时S△PCQ=1.或CQ′=PQ′=,可得S△P′CQ′=2,不存在点C为等腰三角形的直角顶点,

综上所述,△CPQ的面积除了“①”中求得的结果外,还可以是1或2.

故答案为1或2.【点睛】本题属于反比例函数综合题,考查了正方形的性质,反比例函数的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21、【分析】将特殊角的三角函数值代入求解即可.【详解】原式=|-1|+2×-1=1-+-1=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.22、(1)k=9;(2)k<3【分析】(1)根据反比例函数图象上点的坐标特征得到k-3=2×3,然后解方程即可;

(2)根据反比例函数的性质得,然后解不等式即可;【详解】解:(1)∵点在这个函数的图象上,,解得;(2)∵在函数图象的每一支上,随的增大而增大,,得.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.23、(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2);;.(3)①当点C′在线段BC上时,S=t2;②当点C′在CB的延长线上,S=−t2+t−;③当点E在x轴负半轴,S=t2−4t+1.【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=时,B和C′点重合,如图1所示,此时S=×CE•OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(单位长度/秒),∴点D的运动速度为1单位长度/秒,点C坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t=k时,点D与点B重合,此时k==2;当t=m时,点E和点O重合,如图2所示.sin∠C===,cos∠C=,OD=OC•sin∠C=4×=,CD=OC•cos∠C=4×=.∴m==,n=BD•OD=×(2−)×=.故答案为:;;2.(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①当点C′在线段BC上时,如图3所示.此时CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD•tan∠C=t,此时S=CD•DE=t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−2,DE=CD•tan∠C=t,CE==t,OE=OC−CE=4−t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE•tan∠OEF=t,BF=OB−OF=,∴FM=BF•cos∠C=.此时S=CD•DE−BC′•FM=−;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=2−t,CE=t,DF=,∵,即,∴<t≤2.此时S=BD•DF=×2×(2−t)2=t2−4t+1.综上,当点C′在线段BC上时,S=t2;当点C′在CB的延长线上,S=−t2+t−;当点E在x轴负半轴,S=t2−4t+1.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.24、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论