2023届北京三中学数学九年级第一学期期末考试模拟试题含解析_第1页
2023届北京三中学数学九年级第一学期期末考试模拟试题含解析_第2页
2023届北京三中学数学九年级第一学期期末考试模拟试题含解析_第3页
2023届北京三中学数学九年级第一学期期末考试模拟试题含解析_第4页
2023届北京三中学数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,,,EF与AC交于点G,则是相似三角形共有()A.3对 B.5对 C.6对 D.8对2.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是()A.②③ B.①③④ C.①②④ D.①②③④3.若,则的值是()A.1 B.2 C.3 D.44.一元二次方程的两个根为,则的值是()A.10 B.9 C.8 D.75.关于反比例函数,下列说法正确的是()A.点在它的图象上 B.它的图象经过原点C.当时,y随x的增大而增大 D.它的图象位于第一、三象限6.已知点A(2,y1)、B(4,y2)都在反比例函数(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定7.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是A. B. C. D.8.抛物线的项点坐标是()A. B. C. D.9.如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位10.如图,在边长为的小正方形网格中,点都在这些小正方形的顶点上,相交于点,则()A. B. C. D.11.若两个相似三角形的周长之比为1∶4,则它们的面积之比为()A.1∶2 B.1∶4 C.1∶8 D.1∶1612.下列说法正确的是()A.若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B.可能性很大的事件在一次试验中必然会发生C.相等的圆心角所对的弧相等是随机事件D.掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等二、填空题(每题4分,共24分)13.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.14.如图,人字梯,的长都为2米.当时,人字梯顶端高地面的高度是____米(结果精确到.参考依据:,,)15.圆锥的侧面展开的面积是12πcm2,母线长为4cm,则圆锥的底面半径为_________cm.16.在本赛季比赛中,某运动员最后六场的得分情况如下:17、15、21、28、12、19,则这组数据的方差为______.17.在半径为的圆中,的圆心角所对的弧长是__________.18.双曲线、在第一象限的图像如图,,过上的任意一点,作轴的平行线交于,交轴于,若,则的解析式是_____________.三、解答题(共78分)19.(8分)以下各图均是由边长为1的小正方形组成的网格,图中的点A、B、C、D均在格点上.(1)在图①中,PC:PB=.(2)利用网格和无刻度的直尺作图,保留痕迹,不写作法.①如图②,在AB上找一点P,使AP=1.②如图③,在BD上找一点P,使△APB∽△CPD.20.(8分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?21.(8分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫与点的距离为.(1)求坐垫到地面的距离;(2)根据经验,当坐垫到的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为,现将坐垫调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)22.(10分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.23.(10分)把下列多项式分解因式:(1).(2).24.(10分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求的面积.(3)在第一象限内,求当一次函数值大于反比例函数值时的反比例函数值取值范围.25.(12分)若关于x的方程kx2﹣2x﹣3=0有实根,求k的取值范围.26.如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据相似三角形的判定即可判断.【详解】图中三角形有:,,,,∵,∴共有6个组合分别为:∴,,,,,故选C.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.2、D【分析】根据确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理逐一判断即可得答案.【详解】过不在同一条直线上的三点可以作一个圆,故①错误,圆的内接四边形对角互补,故②错误,平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,故③错误,在同圆或等圆中,相等的圆周角所对的弧也相等,故④错误,综上所述:不正确的结论有①②③④,故选:D.【点睛】本题考查确定圆的条件、圆的内接四边形的性质、垂径定理及圆心角、弧、弦的关系定理,熟练掌握相关性质及定理是解题关键.3、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.4、D【分析】利用方程根的定义可求得,再利用根与系数的关系即可求解.【详解】为一元二次方程的根,,.根据题意得,,.故选:D.【点睛】本题主要考查了一元二次方程的解,根与系数的关系以及求代数式的值,熟练掌握根与系数的关系,是解题的关键.5、D【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】解:A、把(2,-1)代入,得1=-1不成立,故选项错误;B、反比例函数图像不经过原点,故选项错误;C、当x>0时,y随x的增大而减小,故选项错误.D、∵k=2>0,∴它的图象在第一、三象限,故选项正确;故选D.【点睛】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6、B【详解】试题分析:∵当k<0时,y=在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.7、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形;

B、不是轴对称图形,是中心对称图形;

C、是轴对称图形,也是中心对称图形;

D、不是轴对称图形,也不是中心对称图形.

故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后与原图重合.8、D【分析】由二次函数顶点式:,得出顶点坐标为,根据这个知识点即可得出此二次函数的顶点坐标.【详解】解:由题知:抛物线的顶点坐标为:故选:D.【点睛】本题主要考查的二次函数的顶点式的特点以及顶点坐标的求法,掌握二次函数的顶点式是解题的关键.9、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10、B【分析】通过添加辅助线构造出后,将问题转化为求的值,再利用勾股定理、锐角三角函数解即可.【详解】解:连接、,如图:∵由图可知:∴,∴∵小正方形的边长为∴在中,,∴∴.故选:B【点睛】本题考查了正方形的性质、直角三角形的判定、勾股定理以及锐角三角函数.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.11、D【分析】相似三角形的周长比等于相似比,面积比等于相似比的平方.【详解】∵两个相似三角形的周长之比为1∶4∴它们的面积之比为1∶16故选D.【点睛】本题考查相似三角形的性质,本题属于基础应用题,只需学生熟练掌握相似三角形的性质,即可完成.12、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断.【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误.B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C.【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键.二、填空题(每题4分,共24分)13、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.14、1.5.【分析】在中,根据锐角三角函数正弦定义即可求得答案.【详解】在中,∵,,∴,∴.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.15、1【分析】由题意根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:设底面半径为rcm,12π=πr×4,解得r=1.故答案为:1.【点睛】本题考查圆锥的计算,解题的关键是熟练掌握圆锥侧面积的计算公式.16、.【分析】先计算出这组数据的平均数,然后根据方差公式求解.【详解】解:平均数=所以方差是S2==故答案为:.【点睛】本题考查方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【分析】根据弧长公式:即可求出结论.【详解】解:由题意可得:弧长=故答案为:.【点睛】此题考查的是求弧长,掌握弧长公式是解决此题的关键.18、【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出y2的解析式.【详解】解:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,∵S△AOB=1,∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为y2=.三、解答题(共78分)19、(1)1:1;(2)①如图2所示,点P即为所要找的点;见解析;②如图1所示,作点A的对称点A′,见解析;【分析】(1)根据两条直线平行、对应线段成比例即可解答;(2)①先用勾股定理求得AB的长,再根据相似三角形的判定方法即可找到点P;②先作点A关于BD的对称点A',连接A'C与BD的交点即为要找的点P.【详解】解:(1)图1中,∵AB∥CD,∴,故答案为1:1.(2)①如图2所示,点P即为所要找的点;②如图1所示,作点A的对称点A′,连接A′C,交BD于点P,点P即为所要找的点,∵AB∥CD,∴△APB∽△CPD.【点睛】本题考查了相似三角形的做法,掌握相似三角形的判定方法是解答本题的关键.20、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.【分析】(1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y≥0可得关于x的不等式组,解不等式组即得x的取值范围;(2)根据每件的利润×销售量=1,可得关于x的方程,解方程即可求出结果;(3)设每月利润为W元,根据W=每件的利润×销售量可得W与x的函数关系式,然后根据二次函数的性质解答即可.【详解】解:(1)由题意,得:,解得:,∴y=﹣30x+960,∵y≥0,∴﹣30x+960≥0,解得:x≤32,又∵x≥16,∴x的取值范围是:16≤x≤32;答:k=﹣30,b=960,x取值范围为:16≤x≤32;(2)由题意,得:(﹣30x+960)(x﹣16)=1,解得:x1=x2=24,答:商品的定价为24元;(3)设每月利润为W元,由题意,得:W=(﹣30x+960)(x﹣16)=﹣30(x﹣24)2+1.∵﹣30<0,∴当x=24时,W最大=1.答:商品价格应定为24元,最大利润是1元.【点睛】本题是方程和函数的应用题,主要考查了待定系数法求一次函数的解析式、一元二次方程的解法和二次函数的性质等知识,属于常考题型,熟练掌握一元二次方程的解法和二次函数的性质是解题的关键.21、(1)99.5(2)3.9【分析】(1)作于点,由可得答案;(2)作于点,先根据求得的长度,再根据可得答案【详解】(1)如图1,过点E作于点,由题意知、,∴,则单车车座到地面的高度为;(2)如图2所示,过点作于点,由题意知,则,∴.【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.22、y=;【解析】试题分析:(1)先根据锐角三角函数的定义,求出OA的值,然后根据勾股定理求出AB的值,然后由C点是OA的中点,求出C点的坐标,然后将C的坐标代入反比例函数y=中,即可确定反比例函数解析式;(2)先将y=3x与y=联立成方程组,求出点M的坐标,然后求出点D的坐标,然后连接BC,分别求出△OMB的面积,△OBC的面积,△BCD的面积,进而确定四边形OCDB的面积,进而可求三角形OMB与四边形OCDB的面积的比.试题解析:(1)∵A点的坐标为(8,y),∴OB=8,∵AB⊥x轴于点B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵点C是OA的中点,且在第一象限内,∴C(4,3),∵点C在反比例函数y=的图象上,∴k=12,∴反比例函数解析式为:y=;(2)将y=3x与y=联立成方程组,得:,解得:,,∵M是直线与双曲线另一支的交点,∴M(﹣2,﹣6),∵点D在AB上,∴点D的横坐标为8,∵点D在反比例函数y=的图象上,∴点D的纵坐标为,∴D(8,),∴BD=,连接BC,如图所示,∵S△MOB=•8•|﹣6|=24,S四边形OCDB=S△OBC+S△BCD=•8•3+=15,∴.考点:反比例函数与一次函数的交点问题.23、(1);(2)【分析】(1)原式整理后利用完全平方公式分解即可;(2)原式提取公因式即可得到结果.【详解】(1);(2).【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.24、(1)反比例函数的解析式为,直线AB的解析式为;(2)2;(3).【分析】(1)先根据可求出点B的坐标,再利用待定系数法即可得;(2)先根据直线AB的解析式求出点C的坐标,从而可得OC的长,再根据点B的坐标可得OC边上的高,然后根据三角形的面积公式即可;(3)结合点B的坐标,利用函数图象法即可得.【详解】(1),且点B位于第一象限,,的OA边上的高为,,解得,,设反比例函数的解析式为,将点代入得:,解得,则反比例函数的解析式为,设直线AB的解析式为,将点代入得:,解得,则直线AB的解析式为;(2)对于,当时,,即点C的坐标为,则,,的OC边上的高为2,则的面积为;(3)在第一象限内,一次函数值大于反比例函数值表示的是一次函数的图象位于反比例函数的图象的上方,则由函数图象得:此时反比例函数值取值范围为.【点睛】本题考查了利用待定系数法求一次函数和反比例函数的解析式、一次函数与反比例函数的综合等知识点,熟练掌握待定系数法是解题关键.25、k≥﹣.【分析】分k=0和k≠0分别求解,其中k≠0是利用判别式列出不等式,解之可得.【详解】解:若k=0,则方程为﹣2x﹣3=0,解得x=-;若k≠0,则△=(﹣2)2﹣4k×(﹣3)=4+12k≥0,解得:k≥﹣且k≠0;综上,k≥﹣.【点睛】本题主要考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论