山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题含解析_第1页
山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题含解析_第2页
山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题含解析_第3页
山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题含解析_第4页
山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市兴县康宁中学2025届九年级数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点()A.在圆上 B.在圆内 C.在圆外 D.在圆上或在圆内2.1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是()A.80米 B.85米 C.120米 D.125米3.下列方程中,属于一元二次方程的是()A. B. C. D.4.圆内接正三角形、正方形、正六边形的边长之比为()A.1:2:3 B.1:: C.::1 D.无法确定5.在Rt△ABC中,∠C=90°,BC=4,sinA=,则AC=()A.3 B.4 C.5 D.66.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形 B.菱形 C.矩形 D.平行四边形7.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为A.12米 B.4米 C.5米 D.6米8.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)9.如图所示的几何体的主视图为()A. B. C. D.10.如图,点在以为直径的半圆上,点为圆心,,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.反比例函数图像经过点(2,-3),则它的函数表达式是.12.菱形边长为4,,点为边的中点,点为上一动点,连接、,并将沿翻折得,连接,取的中点为,连接,则的最小值为_____.13.点A(﹣3,m)和点B(n,2)关于原点对称,则m+n=_____.14.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.15.已知⊙O的内接正六边形的边心距为1.则该圆的内接正三角形的面积为_____.16.在一个不透明的袋子中装有个除颜色外完全相同的小球,其中绿球个,红球个,摸出一个球放回,混合均匀后再摸出一个球,两次都摸到红球的概率是___________.17.方程的解是_____________.18.若点P(m,-2)与点Q(3,n)关于原点对称,则=______.三、解答题(共66分)19.(10分)已知抛物线C1:y1=a(x﹣h)2+2,直线1:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.20.(6分)近段时间成都空气质量明显下降,市场上的空气净化器再次成为热销,某商店经销--种空气净化器,每台净化器的成本价为元,经过一段时间的销售发现,每月的销售量台与销售单价(元)的关系为.(1)该商店每月的利润为元,写出利润与销售单价的函数关系式;(2)若要使每月的利润为元,销售单价应定为多少元?(3)商店要求销售单价不低于元,也不高于元,那么该商店每月的最高利润和最低利润分别为多少?21.(6分)雾霾天气严重影响人民的生活质量.在今年“元旦”期间,某校九(1)班的综合实践小组同学对“雾霾天气的主要成因”随机调查了本地部分市民,并对调查结果进行了整理,绘制了如图不完整的统计图表,观察分析并回答下列问题.组别雾霾天气的主要成因A工业污染B汽车尾气排放C炉烟气排放D其他(滥砍滥伐等)(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图;(3)若该地区有100万人口,请估计持有A、B两组主要成因的市民有多少人?22.(8分)如图,已知正方形ABCD的边长为8,点E是DC上的一动点,过点作EF⊥AE,交BC于点F,连结AF.(1)证明:△ADE∽△ECF;(2)若△ADE的周长与△ECF的周长之比为4:3,求BF的长.23.(8分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)24.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=1.求BF的长.25.(10分)如图,已知等边,以边为直径的圆与边,分别交于点、,过点作于点.(1)求证:是的切线;(2)过点作于点,若等边的边长为8,求的长.26.(10分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,(1)当转动到与桌面平行时,求点到桌面的距离;(2)在使用过程中发现,当转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).

参考答案一、选择题(每小题3分,共30分)1、B【分析】由题意根据圆的半径和线段的长进行大小比较,即可得出选项.【详解】解:因为圆的半径为5,线段的长为4,5>4,所以点在圆内.故选B.【点睛】本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.2、D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解:设电视塔的高度应是x,根据题意得:=,解得:x=125米.故选D.命题立意:考查利用所学知识解决实际问题的能力.3、D【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0,对各选项分析判断后利用排除法求解.【详解】解:A.不是一元二次方程;B.不是一元二次方程;C.整理后可知不是一元二次方程;D.整理后是一元二次方程;故选:D.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).4、C【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【详解】解:设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°R,故BC=2BDR;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE,故BCR;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA•cos60°R,AB=2AG=R,∴圆内接正三角形、正方形、正六边形的边长之比为R:R:R::1.故选:C.【点睛】本题主要考查了正多边形和圆,掌握正多边形和圆是解题的关键.5、A【分析】先根据正弦的定义得到sinA==,则可计算出AB=5,然后利用勾股定理计算AC的长.【详解】如图,在Rt△ACB中,∵sinA=,∴,∴AB=5,∴AC==1.故选:A.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.6、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,

∵E、F、G、H分别为各边的中点,

∴HG、EF分别为△ACD与△ABC的中位线,

∴HG∥AC∥EF,,

∴四边形EFGH是平行四边形;同理可得,,∵AC=BD,

∴EH=GH,

∴四边形EFGH是菱形;

故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.7、A【分析】试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故选A.【详解】请在此输入详解!8、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.9、B【分析】根据三视图的定义判断即可.【详解】解:所给几何体是由两个长方体上下放置组合而成,所以其主视图也是上下两个长方形组合而成,且上下两个长方形的宽的长度相同.故选B.【点睛】本题考查了三视图知识.10、B【分析】首先由圆的性质得出OC=OD,进而得出∠CDO=∠DCO,∠COD=70°,然后由圆周角定理得出∠CAD.【详解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD为弧CD所对的圆心角,∠CAD为弧CD所对的圆周角∴∠CAD=∠COD=35°故答案为B.【点睛】此题主要考查对圆周角定理的运用,熟练掌握,即可解题.二、填空题(每小题3分,共24分)11、.【解析】试题分析:设反比例函数的解析式是.则,得,则这个函数的表达式是.故答案为.考点:1.待定系数法求反比例函数解析式;2.待定系数法.12、【分析】取BC的中点为H,在HC上取一点I使,相似比为,由相似三角形的性质可得,即当点D、G、I三点共线时,最小,由点D作BC的垂线交BC延长线于点P,由锐角三角函数和勾股定理求得DI的长度,即可根据求解.【详解】取BC的中点为H,在HC上取一点I使,相似比为∵G为的中点∴∵且相似比为,得当点D、G、I三点共线时,最小由点D作BC的垂线交BC延长线于点P即由勾股定理得故答案为:.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键.13、1【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】∵点A(-3,m)与点A′(n,2)关于原点中心对称,∴n=3,m=-2,∴m+n=1,故答案为1.【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.14、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.【详解】∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴∴点C的坐标为(6,2),∵点O的对应点C恰好落在反比例函数y=的图象上,

∴k=2,故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.15、4【分析】作出⊙O及内接正六边形ABCDEF,连接OC、OB,过O作ON⊥CE于N,易得△COB是等边三角形,利用三角函数求出OC,ON,CN,从而得到CE,再求内接正三角形ACE的面积即可.【详解】解:如图所示,连接OC、OB,过O作ON⊥CE于N,∵多边形ABCDEF是正六边形,∴∠COB=60°,∵OC=OB,∴△COB是等边三角形,∴∠OCM=60°,∴OM=OC•sin∠OCM,∴OC=.∵∠OCN=30°,∴ON=OC=,CN=1,∴CE=1CN=4,∴该圆的内接正三角形ACE的面积=,故答案为:4.【点睛】本题考查圆的内接多边形与三角函数,利用边心距求出圆的半径是解题的关键.16、【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】解:画树状图得:∵共有9种等可能的结果,两次都摸到红球的只有4种情况,

∴两次都摸到红球的概率是:.

故答案为.【点睛】此题考查的是用列表法或树状图法求概率的知识.正确的列出树状图是解决问题的关键.17、x1=3,x2=-1【分析】利用因式分解法解方程.【详解】,(x-3)(x+1)=0,∴x1=3,x2=-1,故答案为:x1=3,x2=-1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的方法解方程是关键.18、-1【分析】根据坐标的对称性求出m,n的值,故可求解.【详解】依题意得m=-3,n=2∴=故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点.三、解答题(共66分)19、(1)证明见解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函数的性质找出抛物线的顶点坐标,将x=h代入一次函数解析式中可得出点(h,2)在直线1上,进而可证出直线l恒过抛物线C1的顶点;(2)由a>0可得出当x=h=1时y1=a(x﹣h)2+2取得最小值2,结合当t≤x≤t+3时二次函数y1=a(x﹣h)2+2的最小值为2,可得出关于t的一元一次不等式组,解之即可得出结论;(3)令y1=y2可得出关于x的一元二次方程,解之可求出点P,Q的横坐标,由线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,可得出>1或<﹣1,再结合1≤k≤3,即可求出a的取值范围.【详解】(1)∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2),当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点;(2)∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2,又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1;(3)令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【点睛】本题考查了二次函数的性质、一次函数图象上点的坐标特征、二次函数的最值、解一元二次方程以及解不等式,解题的关键是:(1)利用二次函数的性质及一次函数图象上点的坐标特征,证出直线l恒过抛物线C的顶点;(2)利用二次函数的性质结合二次函数的最值,找出关于t的一元一次不等式组;(3)令y1=y2,求出点P,Q的横坐标.20、(1);(2)300元;(3)最高利润为20000元,最低利润为15000元.【分析】(1)根据销售利润每天的销售量(销售单价成本价),即可列出函数关系式;(2)令代入解析式,求出满足条件的的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值,将代入即可求出最小值.【详解】解:(1)由题意得:;(2)令,解得:,故要使每月的利润为20000元,销售单价应定为300元;(3),当时,;故最高利润为20000元,最低利润为15000元.【点睛】本题考查了二次函数的实际应用,难度适中,解答本题的关键是熟练掌握利用配方法求二次函数的最大值.21、(1)200人;(2)图见解析;(3)75万人.【分析】(1)根据A组的人数和所占的百分比可以求得本次被调查的市民共有多少人;(2)根据统计图中的数据可以求得C组和D组的人数,计算出B组和D组所占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以计算出持有A、B两组主要成因的市民有多少人.【详解】解:(1)90÷45%=200(人),即本次被调查的市民共有200人;(2)C组有200×15%=30(人),D组有:200﹣90﹣60﹣30=20(人),B组所占的百分比为:×100%=30%,D组所占的百分比是:×100%=10%,补全的条形统计图和扇形统计图如右图所示;(3)100×(45%+30%)=75(万人),答:持有A、B两组主要成因的市民有75万人.【点睛】本题考查了扇形统计图和频数直方图,解决本题的关键是扇形统计图和频数直方图里的数据关系要相对应.22、(1)详见解析;(2)6.5.【分析】(1)根据正方形的性质证明∠FEC=∠DAE,即可求解;(2)根据周长比得到相似比,故,求出FC,即可求解.【详解】解:(1)∵四边形ABCD是正方形∴∠C=∠D=90°,AD=DC=8,∵EF⊥AC,∴∠AEF=90°,∴∠AED+∠FED=90°在Rt△ADE中,∠DAE+∠AED=90°∴∠FEC=∠DAE∴△DAE∽△FEC(2)∵△DAE∽△FEC∴∵△ADE的周长与△ECF的周长之比为4:3∴△ADE的边长与△ECF的边长之比为4:3即∵AD=8,∴EC=6∴DE=8-6=2∴∴FC=1.5∴DF=8-1.5=6.5【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知正方形的性质及相似三角形的判定定理.23、(1)相切,证明见解析;(2)答案见解析【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论