版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省邵阳市隆回县九年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知反比例函数y=,下列结论中不正确的是()A.图象经过点(﹣1,﹣1) B.图象在第一、三象限C.当x>1时,y>1 D.当x<0时,y随着x的增大而减小2.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:(1)(2)(3)(4)其中正确命题的个数是()A. B. C. D.3.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.4.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个5.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是()A.5 B.6 C.7 D.86.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)7.下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。C.某彩票中奖率为,说明买100张彩票,有36张中奖。D.打开电视,中央一套正在播放新闻联播。8.如图,在中,.将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为()A. B.C. D.9.已知抛物线,则下列说法正确的是()A.抛物线开口向下 B.抛物线的对称轴是直线C.当时,的最大值为 D.抛物线与轴的交点为10.已知二次函数y=ax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()A.y轴 B.直线x= C.直线x=1 D.直线x=二、填空题(每小题3分,共24分)11.已知关于的方程的一个解为,则m=_______.12.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.13.将方程化成一般形式是______________.14.6与x的2倍的和是负数,用不等式表示为.15.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm216.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.17.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为_______cm.18.一个圆锥的母线长为5cm,底面圆半径为3cm,则这个圆锥的侧面积是____cm².(结果保留π).三、解答题(共66分)19.(10分)计算(1)tan60°﹣sin245°﹣3tan45°+cos60°(2)+tan30°20.(6分)在平面直角坐标系中,已知点是直线上一点,过点分别作轴,轴的垂线,垂足分别为点和点,反比例函数的图象经过点.(1)若点是第一象限内的点,且,求的值;(2)当时,直接写出的取值范围.21.(6分)阅读材料:小胖同学遇到这样一个问题,如图1,在△ABC中,∠ABC=45°,AB=2,AD=AE,∠DAE=90°,CE=,求CD的长;小胖经过思考后,在CD上取点F使得∠DEF=∠ADB(如图2),进而得到∠EFD=45°,试图构建“一线三等角”图形解决问题,于是他继续分析,又意外发现△CEF∽△CDE.(1)请按照小胖的思路完成这个题目的解答过程.(2)参考小胖的解题思路解决下面的问题:如图3,在△ABC中,∠ACB=∠DAC=∠ABC,AD=AE,∠EAD+∠EBD=90°,求BE:ED.22.(8分)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是__________,位置关系是__________;(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断并给予证明.23.(8分)游乐园新建的一种新型水上滑道如图,其中线段表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道可以看作反比例函数图象的一部分,滑道可以看作是二次函数图象的一部分,两滑道的连接点B为二次函数的顶点,且点B到水面的距离,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离,与点B的水平距离.(1)求反比例函数的关系式及其自变量的取值范围;(2)求整条滑道的水平距离;(3)若小明站在平台上相距y轴的点M处,用水枪朝正前方向下“扫射”,水枪出水口N距离平台,喷出的水流成抛物线形,设这条抛物线的二次项系数为p,若水流最终落在滑道上(包括B、D两点),直接写出p的取值范围.24.(8分)已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△PAQ相似.25.(10分)已知,求的值.26.(10分)如图,在中,直径垂直于弦,垂足为,连结,将沿翻转得到,直线与直线相交于点.(1)求证:是的切线;(2)若为的中点,,求的半径长;(3)①求证:;②若的面积为,,求的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数的性质,利用排除法求解.【详解】A、x=﹣1,y==﹣1,∴图象经过点(﹣1,﹣1),正确;B、∵k=1>0;,∴图象在第一、三象限,正确;C、当x=1时,y=1,∵图象在第一象限内y随x的增大而减小,∴当x>1时y<1,错误;D、∵k=1>0,∴图象在第三象限内y随x的增大而减小,正确.故选:C.【点睛】此题考查反比例函数的性质,正确掌握函数的增减性,k值与图象所在象限的关系.2、D【分析】根据矩形的性质,勾股定理,等腰三角形的判定与性质以及全等三角形的判定与性质逐一对各命题进行分析即可得出答案.【详解】(1)在矩形ABCD中,∵DE平分∴∵∴是等腰直角三角形∴∴∵是等腰直角三角形∴∴∴∴∴,故(1)正确;(2),∴,故(2)正确;(3)∵∴∵∴∴∴∴∴∴∴,故(3)正确;(4)∵在和中,∴∴在和中,∴∴∴,故(4)正确故选D【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定及性质,等腰三角形的性质等,熟练掌握和灵活运用相关知识是解题的关键.3、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.4、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【点睛】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.5、B【分析】设白球的个数为x,利用概率公式即可求得.【详解】设白球的个数为x,由题意得,从14个红球和x个白球中,随机摸出一个球是白球的概率为0.3,则利用概率公式得:,解得:,经检验,x=6是原方程的根,故选:B.【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.6、C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.7、B【解析】A、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B.8、C【解析】试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.故选C.考点:1.旋转的性质2.含30度角的直角三角形.9、D【分析】根据二次函数的性质对A、B进行判断;根据二次函数图象上点的坐标特征对C进行判断;利用抛物线与轴交点坐标对D进行判断.【详解】A、a=1>0,则抛物线的开口向上,所以A选项错误;B、抛物线的对称轴为直线x=1,所以B选项错误;C、当x=1时,有最小值为,所以C选项错误;D、当x=0时,y=-3,故抛物线与轴的交点为,所以D选项正确.故选:D.【点睛】本题考查了二次函数的性质,主要涉及开口方向,对称轴,与y轴的交点坐标,最值问题,熟记二次函数的性质是解题的关键.10、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决.【详解】解:由表格可得,该函数的对称轴是:直线x=,故选:B.【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.二、填空题(每小题3分,共24分)11、0【分析】把代入原方程得到关于的一元一次方程,解方程即可得到答案.【详解】解:把代入原方程得:故答案为:【点睛】本题考查的是一元二次方程的解的含义,掌握方程的解的含义是解题的关键.12、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.13、【分析】先将括号乘开,再进行合并即可得出答案.【详解】x2-6x+4+x+1=0,.故答案为:.【点睛】本题考查了一次二次方程的化简,注意变号是解决本题的关键.14、6+2x<1【解析】试题分析:6与x的2倍的和为2x+6;和是负数,那么前面所得的结果小于1.解:x的2倍为2x,6与x的2倍的和写为6+2x,和是负数,∴6+2x<1,故答案为6+2x<1.15、60π【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.16、【解析】根据弧长公式可得:=,故答案为.17、【分析】根据Rt△ABC中的30°角所对的直角边是斜边的一半、直角三角形斜边上的中线等于斜边的一半以及旋转的性质推知△AA′C是等边三角形,所以根据等边三角形的性质利用弧长公式来求CA′旋转所构成的扇形的弧长.【详解】解:∵在Rt△ABC中,∠B=30°,AB=10cm,∴AC=AB=5cm.根据旋转的性质知,A′C=AC,∴A′C=AB=5cm.∴点A′是斜边AB的中点,∴AA′=AB=5cm.∴AA′=A′C=AC,∴∠A′CA=60°.∴CA′旋转所构成的扇形的弧长为:(cm).故答案为:.18、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.三、解答题(共66分)19、(1)0;(2)【分析】(1)将特殊角的三角函数值代入求解;(2)将特殊角的三角函数值代入求解.【详解】(1)原式=×﹣()2﹣3×1+=3﹣﹣3+=0;(2)原式====.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20、(1);(2)且.【分析】(1)设点,根据,得到,代入,求得的坐标,即可求得答案;(2)依照(1),求得时的A点的坐标,根据题意,画出函数图象,然后根据函数的图象直接求出k的取值范围即可.【详解】(1)依题意,设点,∴,∵,∴,∵点在直线上,∴点的坐标为,∵点在函数的图像上,∴;(2)依题意,设点,∴,∵,∴,∵点在直线上,∴点的坐标为或,∵点在函数的图像上,∴或,观察图象,当且时,.【点睛】此题属于反比例函数与一次函数的综合题,涉及的知识有:待定系数法求函数解析式,一次函数与反比例函数的交点,坐标与图形性质,此类题要先求特殊位置时对应的k值,利用数形结合的思想,依照题意画出图形,利用数形结合找出k的取值范围.21、CD=5;(1)见解析;(2)【分析】(1)在CD上取点F,使∠DEF=∠ADB,证明△ADB∽△DEF,求出DF=4,证明△CEF∽△CDE,由比例线段可求出CF=1,则CD可求出;(2)如图3,作∠DAT=∠BDE,作∠RAT=∠DAE,通过证明△DBE∽△ATD,可得,可得,通过证明△ARE≌△ATD,△ABR≌△ACT,可得BR=TC=DT,即可求解.【详解】解:(1)在CD上取点F,使∠DEF=∠ADB,∵AD=AE,∠DAE=90°,∴DE=AD=AE,∵∠ABC=45°,∠ADE=45°,且∠ADC=∠ADE+∠EDC,∴∠BAD=∠EDC,∵∠BDA=∠DEF,∴△ADB∽△DEF,∴=,∵AB=2,∴DF=4,又∵∠CDE+∠C=45°,∴∠CEF=∠CDE,∴△CEF∽△CDE,∴,又∵DF=4,CE=,∴,∴CF=1或CF=5(舍去),∴CD=CF+4=5;(2)如图3,作∠DAT=∠BDE,作∠RAT=∠DAE,∵∠ACB=∠DAC=∠ABC,∴AB=AC,AD=CD,∵AD=AE,∴∠AED=∠ADE,∵∠EAD+∠EBD=90°,∴∠EAD+2∠EBD=180°,且∠EAD+2∠AED=180°,∴∠EBD=∠AED=∠ADE,∵∠BDA=∠DAT+∠ATD=∠BDE+∠ADE,∴∠ADE=∠ATD=∠EBD,且∠BDE=∠DAT,∴△DBE∽△ATD,∴,∠ADT=∠BED,∴,且AD=DC,∴,∵∠RAT=∠DAE,∠ADE=∠ATD,∴∠RAE=∠DAT,∠AED=∠ART=∠ADE=∠ATD,∴AR=AT,且∠RAE=∠DAT,∠ARE=∠ATD,∴△ARE≌△ATD(ASA)∴∠ADT=∠AER,DT=ER,∴∠BED=∠AER,∴∠AED=∠BER=∠EBD,∴RE=RB=DT,∵AB=AC,∠ABC=∠ACB,∠ARB=∠ATC,∴△ABR≌△ACT(AAS)∴BR=TC,∴DT=TC,∴CD=2DT,∴=【点睛】本题主要考查相似三角形及全等三角形的判定及性质,作合适的辅助线对证明三角形相似起到关键作用.22、(1)FG=CE,FG∥CE;(2)成立,理由见解析.【解析】(1)结论:FG=CE,FG∥CE,如图1中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可;(2)结论仍然成立,如图2中,设DE与CF交于点M,首先证明△CBF≌△DCE,推出DE⊥CF,再证明四边形EGFC是平行四边形即可.【详解】(1)结论:FG=CE,FG∥CE.理由:如图1中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.故答案为FG=CE,FG∥CE;(2)结论仍然成立.理由:如图2中,设DE与CF交于点M,∵四边形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四边形EGFC是平行四边形.∴GF=EC,∴GF=EC,GF∥EC.【点睛】本题三角形与四边形综合问题,涉及全等三角形的判定与性质,正方形的性质,平行四边形的判定与性质,熟练掌握全等三角形的性质是解题的关键.23、(1),;(2)7m;(3).【分析】(1)在题中,BE=2,B到y轴的距离是5,即反比例函数图象上一点的横坐标和纵坐标都已告知,则可求出比例系数k;(2)根据B,C的坐标求出二次函数解析式,得到点D坐标,即OD长度再减去AP长度,可得滑道ABCD的水平距离;(3)由题意可知点N为抛物线的顶点,设水流所成抛物线的表达式为,通过计算水流分别落到点B和点D可以得出p的取值范围.【详解】解:(1)∵,点B到y轴的距离是5,∴点B的坐标为.设反比例函数的关系式为,则,解得.∴反比例函数的关系式为.∵当时,,即点A的坐标为,∴自变量x的取值范围为;(2)由题意可知,二次函数图象的顶点为,点C坐标为.设二次函数的关系式为,则,解得.∴二次函数的关系式为.当时,解得(舍去),∴点D的坐标为,则.∴整条滑道的水平距离为:;(3)p的取值范围为.由题意可知,点N坐标为(,即,为抛物线的顶点.设水流所成抛物线的表达式为.当水流落在点时,由,解得;当水流落在点时,由,解得.∴p的取值范围为.【点睛】此题主要考查了反比例函数和二次函数的基本性质和概念,以及用待定系数法求函数的解析式,难度较大.错因分析较难题.失分原因是(1)没有掌握利用待定系数法求反比例函数解析式;(2)没有掌握二次函数的基本性质,利用二次函数的性质求得点D的坐标;(3)没有掌握利用顶点式求二次函数的解析式,根据B,D两点的坐标进而求得p的取值范围.24、(1);(2)当t=或时,△OAC与△APQ相似.【分析】(1)要求直线AC的解析式,需要求出点A、点C的坐标,可以利用等积法求得C点的纵坐标,利用勾股定理求得横坐标,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度个人与公司间代收代付业务合同范本3篇
- 2025年度年度城市绿化劳务承包综合服务版合同3篇
- 二零二五年度公司施工队高速公路施工合作协议3篇
- 2025年度航空航天实验室航天器研发与制造合同3篇
- 二零二五年度冷库租赁及冷链物流运输保障合同
- 二零二五年度冷链运输及冷链设备维修服务合同
- 二零二五年度航空航天材料研发全新期权合同3篇
- 2025年度智能门锁用户购买合同3篇
- 二零二五年度金融机构对赌协议合同-信贷业务与风险控制3篇
- 2025年度人工智能公司合伙人股权分配与战略规划合同3篇
- 道德与法治-《我也有责任》观课报告
- autocad二次开发教程基础篇
- 2021四川省医师定期考核题库中医类别(10套)
- GB/T 231.3-2022金属材料布氏硬度试验第3部分:标准硬度块的标定
- 过敏性紫癜-教学课件
- GB/T 24183-2021金属材料薄板和薄带制耳试验方法
- GB/T 11446.8-2013电子级水中总有机碳的测试方法
- 医院患者压力性损伤情况登记表
- 医院手术分级动态管理表
- 湖南2023消耗量定额说明及计算规则-市政工程
- 危险化学品储存柜安全管理
评论
0/150
提交评论