河南省延津县2025届数学九上期末统考试题含解析_第1页
河南省延津县2025届数学九上期末统考试题含解析_第2页
河南省延津县2025届数学九上期末统考试题含解析_第3页
河南省延津县2025届数学九上期末统考试题含解析_第4页
河南省延津县2025届数学九上期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省延津县2025届数学九上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若∽,相似比为,则与的周长比为()A. B. C. D.2.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确的有()A.1个 B.2个 C.3个 D.4个3.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(﹣2,7) B.(2,7) C.(2,﹣9) D.(﹣2,﹣9)4.若点,均在反比例函数的图象上,则与关系正确的是()A. B. C. D.5.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=6.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a< B.≤a<C.a≤或a> D.a≤﹣1或a≥7.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,矩形ABCD内的一个动点P落在阴影部分的概率是()A. B. C. D.8.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.9.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是A.正方体B.长方体C.三棱柱D.圆锥10.如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm11.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A. B. C. D.12.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A. B. C. D.二、填空题(每题4分,共24分)13.已知两个相似三角形的相似比为2︰5,其中较小的三角形面积是,那么另一个三角形的面积为.14.如图,在中,点在边上,与边分别相切于两点,与边交于点,弦与平行,与的延长线交于点若点是的中点,,则的长为_____.15.抛物线的顶点坐标是_______.16.一元二次方程配方后得,则的值是__________.17.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是______.18.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.三、解答题(共78分)19.(8分)在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤1.(1)AE=________,EF=__________(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(相遇时除外)(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.20.(8分)在二次函数的学习中,教材有如下内容:小聪和小明通过例题的学习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探究方程的近似解,做法如下:请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).21.(8分)伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?22.(10分)计算(1)2sin30°-tan60°+tan45°;(2)tan245°+sin230°-3cos230°23.(10分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.24.(10分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.25.(12分)在中,,以直角边为直径作,交于点,为的中点,连接、.(1)求证:为切线.(2)若,填空:①当________时,四边形为正方形;②当________时,为等边三角形.26.如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:∵∽,相似比为,∴与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.2、B【解析】由图象与x轴有交点,可以推出b2-4ac>0,即b2>4ac,①正确;由对称轴为x=-b2a=-1可以判定②错误;由x=-1时,y>0,可知③错误.把x=1,x=﹣【详解】①∵图象与x轴有交点,对称轴为x=-b2a=﹣1,与y轴的交点在又∵二次函数的图象是抛物线,∴与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故本选项正确,②∵对称轴为x=-b2a=﹣∴2a=b,∴2a-b=0,故本选项错误,③由图象可知x=﹣1时,y>0,∴a﹣b+c>0,故本选项错误,④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,两边相加整理得5a+c=b,∵c>0,即5a<b,故本选项正确.故选:B.【点睛】本题考查了二次函数图像与各系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.3、B【分析】将题目中的函数解析式化为顶点式,即可写出该抛物线的顶点坐标.【详解】∵抛物线y=﹣x2+4x+3=﹣(x﹣2)2+7,∴该抛物线的顶点坐标是(2,7),故选:B.【点睛】本题考查二次函数的顶点式,解答本题的关键是明确题意,利用二次函数的性质解答.4、C【分析】将点,代入求解,比较大小即可.【详解】解:将点,代入解得:;∴故选:C【点睛】本题考查反比例函数解析式,正确计算是本题的解题关键.5、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.6、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax1-x+1.观察图象可知当a<0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a>0时,x=1时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选A.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.7、B【解析】根据矩形的性质,得△EBO≌△FDO,再由△AOB与△OBC同底等高,△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,,∴△EBO≌△FDO,∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△OBC=S矩形ABCD.故选B.【点睛】本题考查了矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.8、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.9、C【解析】解:只有三棱柱的俯视图为三角形,故选C.10、B【分析】由平行可得=,再由条件可求得=,代入可求得BC.【详解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故选:B.【点睛】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键.11、C【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.12、A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y=12以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中的二次函数问题,考查了学生的分析、解决实际问题的能力.二、填空题(每题4分,共24分)13、25【解析】试题解析:∵两个相似三角形的相似比为2:5,∴面积的比是4:25,∵小三角形的面积为4,∴大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.14、.【分析】连接交于,根据已知条件可得出,点是的中点,再由垂径定理得出CE垂直平分,由此得出是等边三角形,又因为BC、AB分别是的切线,进而得出是等边三角形,利用角之间的关系,可得出,从而可得出OD的长.【详解】解:连接设交于.与相切于点,于..,..点是的中点;,,是的中点,垂直平分,,是等边三角形,,分别是的切线,,,是等边三角形,,,,的半径为.故答案为.【点睛】本题考查的知识点有圆的切线定理,垂径定理,以及等边三角形的性质等,解题的关键是结合题目作出辅助线.15、(5,3)【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h,k),题目比较简单.16、1【分析】将原方程进行配方,然后求解即可.【详解】解:∴-m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.17、1【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【详解】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×11=8,在Rt△OCB中,由勾股定理得:OC===1,故答案为:1.【点睛】此题考查勾股定理,垂径定理的应用,由垂径定理求出BC是解题的关键.18、1;【解析】解:设圆的半径为x,由题意得:=5π,解得:x=1,故答案为1.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l=(弧长为l,圆心角度数为n,圆的半径为R).三、解答题(共78分)19、(1)t,;(2)详见解析;(3)当t为0.1秒或4.1时,四边形EGFH为矩形【分析】(1)先利用勾股定理求出AC的长度,再根据路程=速度×时间即可求出AE的长度,而当0≤t≤2.1时,;当2.1<t≤1时,即可求解;(2)先通过SAS证明△AFG≌△CEH,由此可得到GF=HE,,从而有,最后利用一组对边平行且相等即可证明;(3)利用矩形的性质可知FG=EF,求出GH,用含t的代数式表示出EF,建立方程求解即可.【详解】(1)当0≤t≤2.1时,当2.1<t≤1时,∴故答案为:t,(2)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC===1,∠GAF=∠HCE,∵G、H分别是AB、DC的中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG与△CEH中,,∴,∴GF=HE,∴四边形EGFH是平行四边形.(3)解:如图所示,连接GH,由(1)可知四边形EGFH是平行四边形∵点G、H分别是矩形ABCD的边AB、DC的中点,∴GH=BC=4,∴当EF=GH=4时,四边形EGFH是矩形,分两种情况:①当0≤t≤2.1时,AE=CF=t,EF=1﹣2t=4,解得:t=0.1②当2.1<t≤1时,,AE=CF=t,EF=2t-1=4,解得:t=4.1即:当t为0.1秒或4.1时,四边形EGFH为矩形【点睛】本题主要考查平行四边形的判定及矩形的性质,掌握平行四边形的判定方法及矩形的性质是解题的关键.20、(1)详见解析,,,.(2)详见解析,,,.【分析】分别按照小聪和小明的作法列表,描点,连线画出图象然后找近似值即可.【详解】解法:选择小聪的作法,列表并作出函数的图象:…-1012………根据函数图象,得近似解为,,.解法2:选择小明的作法,列表并作出函数和的图象:…-10123…………-2-112………根据函数图象,得近似解为,,.【点睛】本题主要考查根据函数图象求方程的近似解,能够画出函数图象是解题的关键.21、(1)当每吨销售价为1万元或2万元时,销售利润为

0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);

(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:

w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,

令w=0.96,则-x2+3x-1.04=0.96

解得x1=1,x2=2,

答:当每吨销售价为1万元或2万元时,销售利润为

0.96万元;

(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,

当x=1.5时,w最大=1.21,

∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.22、(1)2-;(2)-.

【解析】(1)直接利用特殊角的三角函数值代入即可求出答案;(2)直接利用特殊角的三角函数值代入即可求出答案.【详解】解:(1)2sin30°-tan60°+tan45°

=2×-+1

=2-;

(2)tan245°+sin230°-3cos230°

=×12+()2-3×()2

=+-

=-.

故答案为:(1)2-;(2)-.【点睛】本题考查特殊角的三角函数值,正确记忆相关数据是解题的关键.23、(1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)【解析】(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到OC=,再根据弧长公式计算出弧BC的弧长=然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD是菱形连接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等边三角形,,∴四边形BOCD是平行四边形,∴四边形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧长∴底面圆半径【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.24、(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论