版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
列分式方程解应用题教案列分式方程解应用题教案/列分式方程解应用题教案列分式方程解应用题教案 八(3)教学目标1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力;2.通过列分式方程解应用题,渗透方程的思想方法。教学重点和难点重点:列分式方程解应用题难点:根据题意,找出等量关系,正确列出方程.教学过程设计一复习1解方程:=
2列方程解应用题的步骤:二、新课例1一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间分析:请同学根据题意,找出题目中的等量关系.骑车的速度=步行速度的___倍;骑车所用的时间=________________小时.请同学依据上述等量关系列出方程.并求解
注意:在例1中我们运用了两个关系式,即时间=距离速度,速度=距离/时间.如果设速度为未知量,则按时间找等量关系列方程;如果设时间为未知量,则按速度找等量关系列方程,所列出的方程都是分式方程.例2某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天分析;这是一个工程问题,在工程问题中有三个量,工作量设为s,工作所用时间设为t,工作效率设为m,三个量之间的关系是:s=mt,或t=sm,或m=st.请同学根据题中的等量关系列出方程.并求解。
三、课堂练习1.甲加工180个零件所用的时间,乙可以加工240个零件,已知甲每小时比乙少加工5个零件,求两人每小时各加工的零件个数.2.A,B两地相距135千米,有大,小两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.
四、小结(1).列分式方程解应用题与列一元一次方程解应用题的方法与步骤基本相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.(2.)列分式方程解应用题,一般是求什么量,就设所求的量为未知数,这种设未知数的方法,叫做设直接未知数.但有时可根据题目特点不直接设题目所求的量为未知量,而是设另外的量为未知量,这种设未知数的方法叫做设间接未知数.在列分式方程解应用题时,设间接未知数,有时可使解答变得简捷五、提高训练1.填空:(1)一件工作甲单独做要m小时完成,乙单独做要n小时完成,如果两人合做,完成这件工作的时间是______小时;(2)某食堂有米m公斤,原计划每天用粮a公斤,现在每天节约用粮b公斤,则可以比原计划多用天数是______;(3)把a千克的盐溶在b千克的水中,则在m千克这种盐水中的含盐量为______千克.2.列方程解应用题.(1)某工人师傅先后两次加工零件各1500个,当第二次加工时,他革新了工具,改进了操作方法,结果比第一次少用了18个小时.已知他第二次加工效率是第一次的2.5倍,求他第二次加工时每小时加工多少零件(2)某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用的时间相等,求他步行40千米用多少小时
(3)已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,则此江水每小时的流速是多少千米
(4)某商品每件售价15元,可获利25%,求这种商品的成本价。列分式方程解运用题的常见类型分析八(3)列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的增根;第二,检验得到的根是不是使实际问题有意义。一、路程问题这类问题涉与到三个数量:路程、速度和时间。它们的数量关系是:路程=速度*时间。列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。例1
某校学生到离校15千米的科技馆去参观。男同学骑自行车出发2/3小时后,女同学才乘汽车前往,结果男、女同学同时到达。如果汽车的速度是自行车速度的3倍,则自行车和汽车的速度各是多少?分析:本题中的等量关系是:[练一练]A、B两地相距60千米。甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。已知乙的速度是甲的3倍,求甲、乙的速度。二、工程问题这类问题也涉与三个数量:工作量、工作效率和工作时间。它们的数量关系是:工作量=工作效率*工作时间。列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。例2
某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。甲、乙单独完成这项工作各需多少天?分析:本题中的等量关系是:甲的工作量+乙的工作量=______________这道题还可以根据等量关系:甲、乙合作完成的工作量+乙单独完成的工作量=总工作量来列方程。同学们可以自己试一下,看能否解出来。[练一练]某校八年级(一)班和(二)班的同学,在双休日参加义务植树的社会实践活动。已知(一)班比(二)班每小时多植树20棵,(一)班植树660棵所用的时间与(二)班植树600棵所用的时间相等。(一)、(二)两班学生每小时各植树多少棵?三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。在解决这类问题时,我们只要运用这些关系就能正确求解。例3
某超市销售一种钢笔,每枝售价为12元。后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。这种钢笔原来每枝进价是多少元?分析:本题中的主要等量关系是:[练一练]1、小张购进20张IC卡,以每张15元的价格出售,当剩下最后两张时,为了与时售完,小张只得按进价售出,这样,利润率就比全部以15元的价格出售降低了2.5%。求每张IC卡的进价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育心理学过关检测试卷B卷附答案
- 通信行业:6G概念及远景白皮书
- 企业融资协议2024格式
- 2024临时活动场地租赁协议样本
- 2024快递业务重要客户服务协议
- 2024手工礼品定制协议
- 2024年施工协议追加条款格式
- 二手房销售预订协议格式 2024
- 2024年度新款手机租赁协议文本
- 2024年建筑项目分包协议样本
- 建设银行员工劳动合同
- 浙江大学学生社团手册(08)
- 水利水电工程专业毕业设计(共98页)
- 医院医用气体管路的设计计算(2014)
- 人教版统编高中语文“文学阅读与写作”学习任务群编写简介
- SQE质量月报参考格式
- 初中物理实验室课程表
- CTQ-2型支线接触网故障智能切除装置概述
- 砂石料取样试验标准与规范
- 运营管理已完毕第七讲库存
- 罗马数字对照表
评论
0/150
提交评论