版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,将△ABC绕点C顺时针旋转50°得△DEC,若AC⊥DE,则∠BAC等于()A.30° B.40° C.50° D.60°2.如图,在△ABC中,DE∥BC,若DE=2,BC=6,则=()A. B. C. D.3.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2 B.1:4 C.1:8 D.1:164.下列一元二次方程中,两实数根之和为3的是()A. B. C. D.5.用配方法将二次函数化为的形式为()A. B.C. D.6.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.7.如图,菱形的对角线,相交于点,过点作于点,连接,若,,则的长为()A.3 B.4 C.5 D.68.某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次.小张同学统计了一下,全班同学共握手了465次.你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A.=465 B.=465 C.x(x﹣1)=465 D.x(x+1)=4659.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=1.则a+b之值为何?()A.1 B.9 C.16 D.2110.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C. D.11.已知关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.<2 B.<3 C.<2且≠0 D.<3且≠212.如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)13.如图,点、、…在反比例函数的图象上,点、、……在反比例函数的图象上,,且,则(为正整数)的纵坐标为______.(用含的式子表示)14.若反比例函数y=的图象与一次函数y=﹣x+3的图象的一个交点到x轴的距离为1,则k=_____.15.=___16.二次函数y=3(x+2)的顶点坐标______.17.如图,在平面直角坐标系xOy中,,,如果抛物线与线段AB有公共点,那么a的取值范围是______.18.已知圆的半径为,点在圆外,则长度的取值范围为___________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.20.(8分)已知:如图,在△ABC中,AB=AC,点D、E分别在边BC、DC上,AB2=BE·DC,DE:EC=3:1,F是边AC上的一点,DF与AE交于点G.(1)找出图中与△ACD相似的三角形,并说明理由;(2)当DF平分∠ADC时,求DG:DF的值;(3)如图,当∠BAC=90°,且DF⊥AE时,求DG:DF的值.21.(8分)《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右.在其“勾股”章中有这样一个问题:“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD.EG=15里,HG经过点A,则FH等于多少里?请你根据上述题意,求出FH的长度.22.(10分)(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)23.(10分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是;在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.24.(10分)如图,在中,是上的高,.(1)求证:;(2)若,求的长.25.(12分)解方程:(1)x(2x﹣1)+2x﹣1=0(2)3x2﹣6x﹣2=026.姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒.(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据旋转的性质可求得∠ACD,根据互余关系可求∠D,根据对应角相等即可得∠BAC的大小.【详解】解:依题意得旋转角∠ACD=50°,由于AC⊥DE,由互余关系可得∠D=90°-50°=40°,由旋转后对应角相等,得∠BAC=∠D=40°,故B选项正确.【点睛】本题考查了图形的旋转变化,要分清是顺时针还是逆时针旋转,旋转了多少度,难度不大,但容易出错,细心点即可.2、D【解析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC
∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即==.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3、A【解析】分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比可得.解:∵两个相似多边形面积比为1:4,∴周长之比为=1:1.故选B.点睛:相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.4、D【分析】根据根与系数的关系,要使一元二次方程中,两实数根之和为3,必有△≥0且,分别计算即可判断.【详解】解:A、∵a=1,b=3,c=-3,∴,;B、∵a=2,b=-3,c=-3,∴,;C、∵a=1,b=-3,c=3,∴,原方程无解;D、∵a=1,b=-3,c=-3,∴,.故选:D.【点睛】本题考查根与系数关系,根的判别式.在本题中一定要注意需先用根的判别式判定根的情况,若方程有根方可用根与系数关系.5、B【分析】加上一次项系数一半的平方凑成完全平方式,将一般式转化为顶点式即可.【详解】故选:B.【点睛】本题考查二次函数一般式到顶点式的转化,熟练掌握配方法是解题的关键.6、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.7、A【分析】根据菱形面积的计算公式求得AC,再利用直角三角形斜边中线的性质即可求得答案.【详解】∵四边形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故选:A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.8、A【解析】因为每位同学都要与除自己之外的(x﹣1)名同学握手一次,所以共握手x(x﹣1)次,由于每次握手都是两人,应该算一次,所以共握手x(x﹣1)÷2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是=465,故选A.【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.9、A【解析】分析:判断出A、C两点坐标,利用待定系数法求出a、b即可;详解:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选A.点睛:本题考查二次函数图形上点的坐标特征,待定系数法等知识,解题的关键是理解题意,判断出A、C两点坐标是解决问题的关键.10、A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.11、D【分析】根据方程有两个不相等的实数根结合二次项系数非0,即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】∵关于x的一元二次方程(k−2)x2−2x+1=0有两个不相等的实数根,∴,解得:k<3且k≠2.故选D.【点睛】本题考查根的判别式,解题突破口是得出关于k的一元一次不等式组.12、C【解析】试题解析:∵∠BDO=∠BEA=90°,∠DBO=∠EBA,∴△BDO∽△BEA,∵∠BOD=∠COE,∠BDO=∠CEO=90°,∴△BDO∽△CEO,∵∠CEO=∠CDA=90°,∠ECO=∠DCA,∴△CEO∽△CDA,∴△BDO∽△BEA∽△CEO∽△CDA.故选C.二、填空题(每题4分,共24分)13、【分析】先证明是等边三角形,求出的坐标,作高线,再证明是等边三角形,作高线,设,根据,解方程可得等边三角形的边长和的纵坐标,同理依次得出结论,并总结规律:发现点、、…在轴的上方,纵坐标为正数,点、、……在轴的下方,纵坐标为负数,可以利用来解决这个问题.【详解】过作轴于,∵,,是等边三角形,,,和,过作轴于,∵,是等边三角形,设,则,中,,,∵,解得:(舍),,,,即的纵坐标为;过作轴于,同理得:是等边三角形,设,则,中,,,∵,解得:(舍),;,,即的纵坐标为;…(为正整数)的纵坐标为:;故答案为;【点睛】本题考查了待定系数法求反比例函数解析式,等边三角形的性质和判定,直角三角形度角的性质,勾股定理,反比例函数图象上点的坐标特征,并与方程相结合解决问题.14、2或﹣1【分析】分反比例函数y=在第一象限和第四象限两种情况解答.【详解】解:当反比例函数y=在第一象限时,﹣x+3=1,解得x=2,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(2,1),∴k=2×1=2;当反比例函数y=在第四象限时,﹣x+3=﹣1,解得x=1,即反比例函数y=的图象与一次函数y=﹣x+3的图象交于点(1,﹣1),∴k=1×(﹣1)=﹣1.∴k=2或﹣1.故答案为:2或﹣1【点睛】本题主要考察反比例函数和一次函数的交点问题,分象限情况作答是解题关键.15、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16、(-2,0);【分析】由二次函数的顶点式,即可得到答案.【详解】解:二次函数y=3(x+2)的顶点坐标是(,0);故答案为:(,0);【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的顶点坐标.17、【解析】分别把A、B点的坐标代入得a的值,根据二次函数的性质得到a的取值范围.【详解】解:把代入得;把代入得,所以a的取值范围为.故答案为.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.18、【分析】设点到圆心的距离为d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】点P在圆外,则点到圆心的距离大于圆的半径,因而线段OP的长度的取值范围是OP>1.故答案为.【点睛】本题考查了对点与圆的位置关系的判断.熟记点与圆位置关系与数量关系的对应是解题关键,由位置关系可推得数量关系,同样由数量关系也可推得位置关系.三、解答题(共78分)19、(1)作图见解析;(2)关于x轴对称.【分析】(1)依据中心对称的性质,即可得到关于原点的中心对称图形△;(2)依据轴对称的性质,即可得到△,进而根据图形位置得出△与△的位置关系.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,△A2B2C2与△A1B1C1的位置关系是关于x轴对称.故答案为:关于x轴对称.【点睛】本题主要考查了利用旋转变换以及轴对称变换作图,掌握轴对称性的性质以及中心对称的性质是解决问题的关键.20、(1)△ABE、△ADC,理由见解析;(2);(3)【分析】(1)根据相似三角形的判定方法,即可找出与△ACD相似的三角形;(2)由相似三角形的性质,得,由DE=3CE,先求出AD的长度,然后计算得到;(3)由等腰直角三角形的性质,得到∠DAG=∠ADF=45°,然后证明△ADE∽△DFA,得到,求出DF的长度,即可得到.【详解】解:(1)与△ACD相似的三角形有:△ABE、△ADC,理由如下:∵AB2=BE·DC,∴.∵AB=AC,∴∠B=∠C,,∴△ABE∽△DCA.∴∠AED=∠DAC.∵∠AED=∠C+∠EAC,∠DAC=∠DAE+∠EAC,∴∠DAE=∠C.∴△ADE∽△CDA.(2)∵△ADE∽△CDA,DF平分∠ADC,∴,设CE=a,则DE=3CE=3a,CD=4a,∴,解得(负值已舍)∴;(3)∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∴∠DAE=∠C=45°,∵DG⊥AE,∴∠DAG=∠ADF=45°,∴AG=DG=,∴,∵∠AED=∠DAC,∴△ADE∽△DFA,∴,∴,∴.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,解题的关键是熟练掌握相似三角形的判定和性质,正确找出证明三角形相似的条件.21、1.1里【分析】通过证明△HFA∽△AEG,然后利用相似比求出FH即可.【详解】∵四边形ABCD是矩形,EG⊥AB,FH⊥AD,∴∠HFA=∠DAB=∠AEG=90°,∴FA∥EG.∴∠HAF=∠G.∴△HFA∽△AEG,∴=,即=,解得FH=1.1.答:FH等于1.1里.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求线段的长度.22、(1)相切,证明见解析;(2)答案见解析【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=,CN,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.23、(1)相同;(2)2;(3).【分析】(1)确定摸到红球的概率和摸到白球的概率,比较后即可得到答案;(2)根据频率即可计算得出n的值;(3)画树状图即可解答.【详解】(1)当n=1时,袋子中共3个球,∵摸到红球的概率为,摸到白球的概率为,∵摸到红球和摸到白球的可能性相同,故答案为:相同;(2)由题意得:,得n=2,故答案为:2;(3)树状图如下:根据树状图呈现的结果可得:(摸出的两个球颜色不同)【点睛】此题考查事件的概率,确定事件可能发生的所有情况机会应是均等的,某事件发生的次数,即可代入公式求出事件的概率.24、(1)见解析;(2).【分析】(1)由于tanB=cos∠DAC,根据正切和余弦的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 针对2024年度建筑企业合同风险防范与控制策略3篇
- 设备安装工程合同范本
- 城市房屋买卖合同
- 装修清包工合同样本
- 人教版九年级化学第五单元1质量守恒定律课时3化学方程式分层作业课件
- 2024年度维修保养合同2篇
- 人教版九年级化学第四单元自然界的水新课标素养提升课件
- 骨肿瘤总论课件
- 员工职业生涯管理学说
- 游泳馆责任协议书范本
- PS基础学习教程
- 清华大学机械原理课件-第8章-组合机构上课讲义
- 校园监控维护记录表
- 小学班级组织建设课件
- 劳动保障监察执法课件
- 小学文明礼仪教育中译六年级上册第九课民族礼仪 哈达
- 克拉2气田-爆炸事故案例解读课件
- 2020牛津译林版高中英语新教材选修第一册全册课文翻译及单词表
- ESD的防护常识幻灯片
- 兽医内科学(全套378张课件)
- 初中英语语法-介词课件(23张)
评论
0/150
提交评论