河北省石家庄市裕华区2025届九上数学期末联考模拟试题含解析_第1页
河北省石家庄市裕华区2025届九上数学期末联考模拟试题含解析_第2页
河北省石家庄市裕华区2025届九上数学期末联考模拟试题含解析_第3页
河北省石家庄市裕华区2025届九上数学期末联考模拟试题含解析_第4页
河北省石家庄市裕华区2025届九上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市裕华区2025届九上数学期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是A. B. C. D.2.下列四个函数图象中,当x>0时,函数值y随自变量x的增大而减小的是()A. B.C. D.3.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上4.从1、2、3、4四个数中随机选取两个不同的数,分别记为,,则满足的概率为()A. B. C. D.5.将抛物线向右平移2个单位,则所得抛物线的表达式为()A. B.C. D.6.下列式子中表示是的反比例函数的是()A. B. C. D.7.方程x2﹣5=0的实数解为()A. B. C. D.±58.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位9.如图,矩形的中心为直角坐标系的原点,各边分别与坐标轴平行,其中一边交轴于点,交反比例函数图像于点,且点是的中点,已知图中阴影部分的面积为,则该反比例函数的表达式是()A. B. C. D.10.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.二、填空题(每小题3分,共24分)11.若反比例函数的图像上有两点,,则____.(填“>”或“=”或“<”)12.已知线段a=4,b=9,则a,b的比例中项线段长等于________.13.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.14.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.15.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为.16.若关于的一元二次方程没有实数根,则的取值范围是__________.17.关于x的分式方程有增根,则m的值为__________.18.已知⊙O的直径AB=20,弦CD⊥AB于点E,且CD=16,则AE的长为_______.三、解答题(共66分)19.(10分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=,cos53°=,tan53°=)20.(6分)已知二次函数的图象经过点.(1)求这个函数的解析式;(2)画出它的简图,并指出图象的顶点坐标;(3)结合图象直接写出使的的取值范围.21.(6分)如图,为线段的中点,与交于点,,且交于,交于.(1)证明:.(2)连结,如果,,,求的长.22.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.23.(8分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是人,“:了解但不使用”的人数是人,“:不了解”所占扇形统计图的圆心角度数为.(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.24.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意:B级满意;C级:基本满意:D级:不满意),并将调查结果绘制成如两幅不完整的统计图,请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是;(2)图①中,∠α的度数是,并把图②条形统计图补充完整;(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的户数约为多少户?25.(10分)已知y与x成反比例,则其函数图象与直线相交于一点A.(1)求反比例函数的表达式;(2)直接写出反比例函数图象与直线y=kx的另一个交点坐标;(3)写出反比例函数值不小于正比例函数值时的x的取值范围.26.(10分)解一元二次方程:x2﹣2x﹣3=1.

参考答案一、选择题(每小题3分,共30分)1、B【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为,即转动圆盘一次,指针停在黄区域的概率是,故选B.【点睛】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.2、C【分析】直接根据图象判断,当x>0时,从左到右图象是下降的趋势的即为正确选项.【详解】A、当x>0时,y随x的增大而增大,错误;B、当x>0时,y随x的增大而增大,错误;C、当x>0时,y随x的增大而减小,正确;D、当x>0时,y随x的增大先减小而后增大,错误;故选:C.【点睛】本题主要考查根据函数图象判断增减性,掌握函数的图象和性质是解题的关键.3、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.4、C【分析】根据题意列出树状图,得到所有a、c的组合再找到满足的数对即可.【详解】如图:符合的共有6种情况,而a、c的组合共有12种,故这两人有“心灵感应”的概率为.故选:C.【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.5、D【分析】根据“左加右减,上加下减”的规律直接求得.【详解】因为抛物线y=3x2−1向右平移2个单位,得:y=3(x−2)2−1,故所得抛物线的表达式为y=3(x−2)2−1.故选:D.【点睛】本题考查平移的规律,解题的关键是掌握抛物线平移的规律.6、D【解析】根据反比例函数的定义逐项分析即可.【详解】A.是一次函数,故不符合题意;B.二次函数,故不符合题意;C.不是反比例函数,故不符合题意;D.是反比例函数,符合题意;故选D.【点睛】本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.7、C【分析】利用直接开平方法求解可得.【详解】解:∵x2﹣5=0,∴x2=5,则x=,故选:C.【点睛】本题考查解方程,熟练掌握计算法则是解题关键.8、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.9、B【分析】根据反比例函数的对称性以及已知条件,可得矩形的面积是8,设,则,根据,可得,再根据反比例函数系数的几何意义即可求出该反比例函数的表达式.【详解】∵矩形的中心为直角坐标系的原点O,反比例函数的图象是关于原点对称的中心对称图形,且图中阴影部分的面积为8,

∴矩形的面积是8,

设,则,

∵点P是AC的中点,

∴,

设反比例函数的解析式为,

∵反比例函数图象于点P,

∴,

∴反比例函数的解析式为.

故选:B.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数系数的几何意义,得出矩形的面积是8是解题的关键.10、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.二、填空题(每小题3分,共24分)11、<【分析】先把A(,2),B(,-1)代入反比例函数,求出的值并比较出其大小即可.【详解】∵点A(,2),B(,-1)是反比例函数图像上的点,∴,,∵,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.12、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,

∴,即,解得,(不合题意,舍去)

故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.13、,【分析】将x=2,y=1代入抛物线的解析式可得到c=−8a,然后将c=−8a代入方程,最后利用因式分解法求解即可.【详解】解:将x=2,y=1代入得:2a+2a+c=1.解得:c=−8a.将c=−8a代入方程得:∴.∴a(x−2)(x+2)=1.∴x1=2,x2=-2.【点睛】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.14、.【分析】通过∠ABC=45°,可得出∠AOC=90°,根据OA=OC就可以结合勾股定理求出AC的长了.【详解】∵∠ABC=45°,∴∠AOC=90°,∴OA1+OC1=AC1.∴OA1+OA1=(1)1.∴OA=.故⊙O的半径为.故答案为:.15、.【解析】试题分析:根据三角形的内角和是180°和扇形的面积公式进行计算.试题解析:∵∠A+∠B+∠C=180°,∴阴影部分的面积=.考点:扇形面积的计算.16、【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】由于关于一元二次方程没有实数根,∵,,,∴,解得:.故答案为:.【点睛】本题考查了一元二次方程为常数)的根的判别式.当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根.17、1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.18、16或1【分析】结合垂径定理和勾股定理,在Rt△OCE中,求得OE的长,则AE=OA+OE或AE=OA-OE,据此即可求解.【详解】解:如图,连接OC,∵⊙O的直径AB=20∴OC=OA=OB=10∵弦CD⊥AB于点E∴CE=CD=8,在Rt△OCE中,OE=则AE=OA+OE=10+6=16,如图:同理,此时AE=OA-OE=10-6=1,故AE的长是16或1.【点睛】本题考查勾股定理和垂径定理的应用,根据题意做出图形是本题的解题关键,注意分类讨论.三、解答题(共66分)19、建成高铁后从B地前往C地的路程约为722千米.【分析】作AD⊥BC于D,分别根据正弦、余弦的定义求出BD、AD,再根据等腰直角三角形的性质求出CD的长,最后计算即可.【详解】解:如图:作AD⊥BC于D,在Rt△ADB中,cos∠DAB=,sin∠DAB=,∴AD=AB•cos∠DAB=516×=309.6,BD=AB•sin∠DAB=516×=412.8,在Rt△ADC中,∠DAC=45°,∴CD=AD=309.6,∴BC=BD+CD≈722,答:建成高铁后从B地前往C地的路程约为722千米.【点睛】本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.20、(1);(1)图见解析,顶点坐标是;(3)或.【分析】(1)利用待定系数法求解即可;(1)先化为,即可得出顶点坐标,并作出图像;(3)根据图象即可得出,或时,y≥1.【详解】(1)函数的图象经过点,∴9+3-1=1,解得,∴函数的解析式为;(1)如图,顶点坐标是;(3)当时,解得:根据图象知,当或时,,∴使的的取值范围是或.【点睛】考查待定系数法求二次函数的解析式以及函数图象的性质,要根据图象所在的位置关系求相关的变量的取值范围.21、(1)见解析;(2)【分析】(1)由,可证∠AFM=∠BMG,从而可证;(2)当时,可得且,再根据可求BG,从而可求CF,CG,进而可求答案.【详解】(1)证明:∵∴,又∵∴.解:(2)∵,∴且∵为的中点,∴又∵,∴∴∴,∴【点睛】本题考查的是相似三角形的判定与性质和勾股定理,熟练掌握相似三角形的相关知识与勾股定理是解题的关键.22、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.23、(1),,;(2)4500人;(3)【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数×使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解.【详解】(1)50÷25%=200(人),200×(1-30%-25%-20%)=50(人),360°×30%=108°,答:这次被调查的总人数是200人,“:了解但不使用”的人数是50人,“:不了解”所占扇形统计图的圆心角度数为108°.故答案是:,,;(2)×(25%+20%)=(人),答:估计使用过“共享单车”的大约有人;(3)列表如下:小张小李黄色蓝色绿色黄色(黄色,黄色)(黄色,蓝色)(黄色,绿色)蓝色(蓝色,黄色)(蓝色,蓝色)(蓝色,绿色)绿色(绿色,黄色)(绿色,蓝色)(绿色,绿色)由列表可知:一共有种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色).【点睛】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键.24、(1)60户;(2)54°;(3)1500户.【分析】(1)由B级别户数及其对应百分比可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论