




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省威宁县九上数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA= B.cosA= C.tanA= D.cosA=2.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2 B.4 C.5﹣ D.8﹣23.下列方程中是关于x的一元二次方程的是()A. B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=04.如图,将一个大平行四边形在一角剪去一个小平行四边形,如果用直尺画一条直线将其剩余部分分割成面积相等的两部分,这样的不同的直线一共可以画出()A.1条 B.2条 C.3条 D.4条5.若关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是()A.k≠0 B.k>4 C.k<4 D.k<4且k≠06.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,的实数根是3或6,的实数根是1或2,,则一元二次方程与为相似方程.下列各组方程不是相似方程的是()A.与 B.与C.与 D.与7.若整数使关于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是()A. B. C. D.8.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50° B.55° C.65° D.75°9.如图,l1∥l2∥l3,若,DF=6,则DE等于()A.3 B.3.2 C.3.6 D.410.下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=0二、填空题(每小题3分,共24分)11.在如图所示的网格中,每个小正方形的边长都为2,若以小正形的顶点为圆心,4为半径作一个扇形围成一个圆锥,则所围成的圆锥的底面圆的半径为___________.12.一个多边形的内角和为900°,这个多边形的边数是____.13.圆锥的底面半径是1,侧面积是3π,则这个圆锥的侧面展开图的圆心角为________.14.有一列数,,,,,,则第个数是_______.15.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.16.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.17.某同学用描点法y=ax2+bx+c的图象时,列出了表:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的y值是_______.18.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.三、解答题(共66分)19.(10分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)20.(6分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.21.(6分)已知二次函数.(1)用配方法求出函数的顶点坐标;(2)求出该二次函数图象与轴的交点坐标。(3)该图象向右平移个单位,可使平移后所得图象经过坐标原点.请直接写出平移后所得图象与轴的另一个交点的坐标为.22.(8分)如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面,竹标顶端离地面,小明到竹杆的距离,竹杆到塔底的距离,求这座古塔的高度.23.(8分)如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹)(1)在图1中,画出△ABD的BD边上的中线;(2)在图2中,若BA=BD,画出△ABD的AD边上的高.24.(8分)如图,将矩形ABCD绕点C旋转得到矩形EFGC,点E在AD上.延长AD交FG于点H(1)求证:△EDC≌△HFE;(2)若∠BCE=60°,连接BE、CH.证明:四边形BEHC是菱形.25.(10分)如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.26.(10分)解方程:(1)(公式法)(2)
参考答案一、选择题(每小题3分,共30分)1、B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A错误;cosA=,故B正确;tanA=,故C错误;cosA=,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.2、B【分析】如图所示,⊙O滚过的路程即线段EN的长度.EN=AB-AE-BN,所以只需求AE、BN的长度即可.分别根据AE和BN所在的直角三角形利用三角函数进行计算即可.【详解】解:连接OE,OA、BO.∵AB,AD分别与⊙O相切于点E、F,∴OE⊥AB,OF⊥AD,∴∠OAE=∠OAD=30°,在Rt△ADE中,AD=1,∠ADE=30°,∴AE=AD=3,∴OE=AE=,∵AD∥BC,∠DAB=10°,∴∠ABC=120°.设当运动停止时,⊙O′与BC,AB分别相切于点M,N,连接O′N,O′M.同理可得,∠BO′N为30°,且O′N为,∴BN=O′N•tan30°=1cm,EN=AB﹣AE﹣BN=8﹣3﹣1=2.∴⊙O滚过的路程为2.故选:B.【点睛】本题考查了切线的性质,平行四边形的性质及解直角三角形等知识.关键是计算出AE和BN的长度.3、C【分析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义即可求解.【详解】解:A选项含有分式,故不是;B选项中没有说明a≠0,则不是;C选项是一元二次方程;D选项中含有两个未知数,故不是;故选:C.【点睛】本题主要考查的是一元二次方程的定义,属于基础题型.解决这个问题的关键就是要明确一元二次方程的定义.4、C【分析】利用平行四边形的性质分割平行四边形即可.【详解】解:如图所示,这样的不同的直线一共可以画出三条,故答案为:1.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的中心对称性.5、C【解析】根据判别式的意义得到△=(-1)2-1k>0,然后解不等式即可.【详解】∵关于x的一元二次方程有两个不相等的实数根,
∴解得:k<1.
故答案为:C.【点睛】本题考查的知识点是一元二次方程根的情况与判别式△的关系,解题关键是熟记一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根.6、C【分析】根据“相似方程”的定义逐项分析即可.【详解】A.∵,∴.∴x1=4,x2=-4,∵,∴x1=5,x2=-5.∵4:(-4)=5:(5),∴与是相似方程,故不符合题意;B.∵,∴x1=x2=6.∵,∴(x+2)2=0,∴x1=x2=-2.∵6:6=(-2):(-2),∴与是相似方程,故不符合题意;C.∵,∴,∴x1=0,x2=7.∵,∴,∴(x-2)(x+3)=0,∴x1=2,x2=-3.∵0:7≠2:(-3),∴与不是相似方程,符合题意;D.∵,∴x1=-2,x2=-8.∵,∴(x-1)(x-4)=0,∴x1=1,x2=4.∵(-2):(-8)=1:4,∴与是相似方程,故不符合题意;故选C.【点睛】本题考查了新定义运算,以及一元二次方程的解法,正确理解“相似方程”的定义是解答本题的关键.7、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:∵至少有4个整数解∴,解得分式方程去分母得解得:∵分式方程有整数解,a为整数∴、、、∴、、、、、、、∵,∴又∵∴或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.8、C【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O为BD的中点,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.9、C【解析】试题解析:根据平行线分线段成比例定理,可得:设解得:故选C.10、C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.二、填空题(每小题3分,共24分)11、【分析】先根据直角三角形边长关系得出,再分别计算此扇形的弧长和侧面积后即可得到结论.【详解】解:如图,,,.,,的长度,设所围成的圆锥的底面圆的半径为,,,故答案为:.【点睛】本题考查了圆锥的计算及弧长的计算的知识,解题的关键是能够从图中了解到扇形的弧长和扇形的半径并利用扇形的有关计算公式进行计算,难度不大.12、1
【分析】根据多边形内角和定理:(n﹣2)×180°,列方程解答出即可.【详解】设这个多边形的边数为n,根据多边形内角和定理得:(n﹣2)×180°=900°,解得n=1.故答案为:1【点睛】本题主要考查了多边形内角和定理的应用,熟记多边形内角和公式并准确计算是解题的关键.13、120°【解析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【详解】∵侧面积为3π,∴圆锥侧面积公式为:S=πrl=π×1×l=3π,解得:l=3,∴扇形面积为3π=,解得:n=120,∴侧面展开图的圆心角是120度.故答案为:120°.【点睛】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.14、【分析】原来的一列数即为,,,,,,于是可得第n个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.15、1,,【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,
∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,
∴,∴,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.
∴,∴,∴DP=;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴,∴,∴DP=;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。综上所述,满足条件的DP的值为1,,.【点睛】本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.16、,【分析】将x=2,y=1代入抛物线的解析式可得到c=−8a,然后将c=−8a代入方程,最后利用因式分解法求解即可.【详解】解:将x=2,y=1代入得:2a+2a+c=1.解得:c=−8a.将c=−8a代入方程得:∴.∴a(x−2)(x+2)=1.∴x1=2,x2=-2.【点睛】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.17、﹣1.【解析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,,函数解析式为y=﹣3x2+1x=2时y=﹣11,故答案为﹣1.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.18、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.三、解答题(共66分)19、(1)经过第一次传球后,篮球落在丙的手中的概率为;(2)篮球传到乙的手中的概率为.【分析】(1)根据概率公式即可得出答案;
(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为;故答案为;(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.20、(1)证明见解析;(2)8﹣.【分析】(1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.【详解】解:(1)证明:如答图,过点O作OE⊥AB于点E,∵AE=BE,CE=DE,∴BE﹣DE=AE﹣CE,即AC=BD.(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∵OA=10,OC=8,OE=6,∴.∴AC=AE﹣CE=8﹣.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21、(1)(-1,8);(2)和;(3)3;(4,0)【分析】(1)利用配方法将一般式转化为顶点式,然后求顶点坐标即可;(2)将y=0代入,求出x的值,即可求出该二次函数图象与轴的交点坐标;(3)根据坐标与图形的平移规律即可得出结论.【详解】解:(1)∴二次函数的顶点坐标为(-1,8);(2)将y=0代入,得解得:∴该二次函数图象与轴的交点坐标为和;(3)∵向右平移3个单位后与原点重合∴该图象向右平移3个单位,可使平移后所得图象经过坐标原点,此时也向右平移了3个单位,平移后的坐标为(4,0)即平移后所得图象与轴的另一个交点的坐标为(4,0)故答案为:3;(4,0).【点睛】此题考查的是求二次函数的顶点坐标、二次函数与x轴的交点坐标和坐标与图形的平移规律,掌握将二次函数的一般式化为顶点式、求二次函数与x轴的交点坐标和坐标与图形的平移规律是解决此题的关键.22、古塔的高度是.【分析】根据题意即可求出EG、GH和CG,再证出,列出比例式,即可求解.【详解】解:∵小明、竹杆、古塔均与地面垂直,∴∵小明眼睛离地面,竹杆顶端离地面∴∵∴,∴即解得:∴答:古塔的高度是.【点睛】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.23、(1)作图见解析;(2)作图见解析.【分析】(1)根据AB=2CD,AB=BE,可知BE=CD,再根据BE//CD,可知连接CE,CE与BD的交点F即为BD的中点,连接AF,则AF即为△ABD的BD边上的中线;(2)由(1)可知连接CE与BD交于点F,则F为BD的中点,根据三角形中位线定理可得EF//AD,EF=AD,则可得四边形ADFE要等腰梯形,连接AF,DE交于点O,根据等腰梯形的性质可推导得出OA=OD,再结合BA=BD可知直线BO是线段AD的垂直平分线,据此即可作出可得△ABD的AD边上的高.【详解】(1)如图AF是△ABD的BD边上的中线;(2)如图AH是△ABD的AD边上的高.【点睛】本题考查了利用无刻度的直尺按要求作图,结合题意认真分析图形的成因是解题的关键.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学(小数乘法)计算题专项练习及答案
- 工业机器人练习试题附答案
- 人体解剖学期末考试复习测试卷含答案
- 2025高二下学期班主任学习动机激励计划
- 2025年二级建造师之二建建筑工程实务题库检测试卷A卷附答案
- 一年级下册科技创新教育计划
- 北仑区第一学期九年级期末考试 科学试卷
- 2025年安康杯竞赛活动反思报告
- 五年级语文秋季跨学科融合教学计划
- 小学班主任应对春季疫情的工作计划
- GA 38-2021银行安全防范要求
- 消防安全主题班会课件(共17张ppt)
- 《全球通史》课件
- 北师版六年级解方程练习200题
- 外贸锁检测报告样式EN12209
- 无损检测人员登记表
- DB33-T 2048-2017(2021)民宿基本要求与评价
- 1员工培训记录表表格类
- 某大学论文答辩模板课件
- 50以内加减法练习题打印版(100题)
- 基础体温表格基础体温表
评论
0/150
提交评论