版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市斗门中学2025届数学九上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.2.如图,在四边形中,对角线,相交于点,且,.若要使四边形为菱形,则可以添加的条件是()A. B. C. D.3.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.34.直径为1个单位长度的圆上有一点A与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A与数轴上的点B重合,则B表示的实数是()A. B. C. D.5.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A.方案一 B.方案二C.两种方案一样 D.工龄短的选方案一,工龄长的选方案二6.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是()A. B. C. D.7.数据0,-1,-2,2,1,这组数据的中位数是()A.-2 B.2 C.0.5 D.08.如图,的直径,弦于.若,则的长是()A. B. C. D.9.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确10.如图,AB是⊙O的直径,点C,D在⊙O上.若∠ABD=55°,则∠BCD的度数为()A.25° B.30° C.35° D.40°二、填空题(每小题3分,共24分)11.计算:|﹣3|﹣sin30°=_____.12.把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.13.如图,的半径弦于点,连结并延长交于点,连结.若,,则的长为_______.14.点P、Q两点均在反比例函数的图象上,且P、Q两点关于原点成中心对称,P(2,3),则点Q的坐标是_____.15.将二次函数的图像向下平移个单位后,它的顶点恰好落在轴上,那么的值等于__________.16.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.17.在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球试验后,发现摸到白球的概率约为30%,估计袋中白球有个.18.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.三、解答题(共66分)19.(10分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?20.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.21.(6分)在平面直角坐标系xOy中,已知抛物线,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且,求点B坐标.22.(8分)如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.(1)求证:点D为BC的中点;(2)求AP的长度;(3)求证:CP是⊙O的切线.23.(8分)(1)用公式法解方程:x2﹣2x﹣1=0(2)用因式分解法解方程:(x﹣1)(x+3)=1224.(8分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.25.(10分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)26.(10分)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求的面积.(3)在第一象限内,求当一次函数值大于反比例函数值时的反比例函数值取值范围.
参考答案一、选择题(每小题3分,共30分)1、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、D【分析】根据对角线互相平分的四边形是平行四边形可得四边形是平行四边形,再根据菱形的判定定理和矩形的判定定理逐一分析即可.【详解】解:∵在四边形中,,∴四边形是平行四边形若添加,则四边形是矩形,故A不符合题意;若添加,则四边形是矩形,故B不符合题意;若添加,与菱形的对角线互相垂直相矛盾,故C不符合题意;若添加则四边形是菱形,故D符合题意.故选D.【点睛】此题考查的是平行四边形的判定、矩形的判定和菱形的判定,掌握平行四边形的判定定理、矩形的判定定理和菱形的判定定理是解决此题的关键.3、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.4、C【分析】因为圆沿数轴向左滚动一周的长度是,再根据数轴的特点及的值即可解答.【详解】解:直径为1个单位长度的圆从原点沿数轴向左滚动一周,数轴上表示1的点与点B之间的距离为圆的周长,点B在数轴上表示1的点的左边.点B对应的数是.故选:C.【点睛】本题比较简单,考查的是数轴的特点及圆的周长公式.圆的周长公式是:.5、B【分析】根据题意分别计算出方案一和方案二的第n年的年收入,进行大小比较,从而得出选项.【详解】解:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,故选方案二更划算;故选B.【点睛】本题考查方案选择,解题关键是准确理解题意根据题意列式比较方案间的优劣进行分析.6、C【分析】连接OM,作,交MF与点H,根据正六边性的性质可得出,,得出为等边三角形,再求OH即可.【详解】解:∵六边形是正六边形,∴∵点为劣弧的中点∴连接OM,作,交MF与点H∵为等边三角形∴FM=OM,∴故答案为:C.【点睛】本题考查的知识点有多边形的内角与外角,特殊角的三角函数值,等边三角形的性质,理解题意正确作出辅助线是解题的关键.7、D【分析】将数据从小到大重新排列,中间的数即是这组数据的中位数.【详解】将数据重新排列得:-2,-1,0,1,2,∴这组数据的中位数是0,故选:D.【点睛】此题考查数据的中位数,将一组数据从小到大重新排列,数据是奇数个时,中间的一个数是这组数据的中位数;数据是偶数个时,中间两个数的平均数是这组数据的中位数.8、C【分析】先根据线段的比例、直径求出OC、OP的长,再利用勾股定理求出CP的长,然后根据垂径定理即可得.【详解】如图,连接OC直径在中,弦于故选:C.【点睛】本题考查了勾股定理、垂径定理等知识点,属于基础题型,掌握垂径定理是解题关键.9、A【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.10、C【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠BAD=90°﹣55°=35°,∴∠BCD=∠BAD=35°.故选C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.二、填空题(每小题3分,共24分)11、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.12、【分析】两块三角板的边与的交点所走过的路程,需分类讨论,由图①的点运动到图②的点,由图②的点运动到图③的点,总路程为,分别求解即可.【详解】如图,两块三角板的边与的交点所走过的路程,分两步走:(1)由图①的点运动到图②的点,此时:AC⊥DE,点C到直线DE的距离最短,所以CF最短,则PF最长,根据题意,,,在中,∴;(2)由图②的点运动到图③的点,过G作GH⊥DC于H,如下图,∵,且GH⊥DC,∴是等腰直角三角形,∴,设,则,∴,∴,解得:,即,点所走过的路程:,故答案为:【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力.正确确定点所走过的路程是解答本题的关键.13、【分析】如下图,连接EB.根据垂径定理,设半径为r,在Rt△AOC中,可求得r的长;△AEB∽△AOC,可得到EB的长,在Rt△ECB中,利用勾股定理得EC的长【详解】如下图,连接EB∵OD⊥AB,AB=8,∴AC=4设的半径为r∵CD=2,∴OC=r-2在Rt△ACO中,,即解得:r=5,∴OC=3∵AE是的直径,∴∠EBA=90°∴△OAC∽△EAB∴,∴EB=6在Rt△CEB中,,即解得:CE=故答案为:【点睛】本题考查垂径定理、相似和勾股定理,需要强调,垂径定理中五个条件“知二推三”,本题知道垂直和过圆心这两个条件14、【分析】由题意根据反比例函数的图象是中心对称图形以及关于原点成中心对称的点的坐标特征进行分析即可求解.【详解】解:∵反比例函数的图象是中心对称图形,且P、Q两点关于原点成中心对称,∴Q(﹣2,﹣3).故答案为:(﹣2,﹣3).【点睛】本题主要考查反比例函数图象的中心对称性,注意掌握反比例函数的图象是中心对称图形以及关于原点成中心对称的点的坐标特征.15、1【分析】利用平移的性质得出平移后解析式,进而得出其顶点坐标,再代入直线y=0求出即可.【详解】y=x2-2x+2=(x-1)2+1,
∴将抛物线y=x2-2x+2沿y轴向下平移1个单位,使平移后的抛物线的顶点恰好落在x轴上,
∴m=1,
故答案为:1.【点睛】此题考查二次函数的性质,二次函数的平移,正确记忆二次函数平移规律是解题关键.16、【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:,其中为底面半径,为圆锥母线则该圆锥的侧面积为故答案为:.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.17、1【分析】根据摸到白球的概率公式x10=40%【详解】解:不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,其中白色小球x个,根据古典型概率公式知:P(白色小球)=x10=10%解得:x=1.故答案为1.考点:已知概率求数量.18、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c是a、b的比例中项,线段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.三、解答题(共66分)19、【解析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为.【详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为.【点睛】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)袋子中白球有4个;(2)【分析】(1)设白球有
x
个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.21、(1)开口方向向下,点A的坐标是,在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)点B的坐标为【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线与对称轴交于点,则,设线段的长为,则,可求点坐标,代入解析式可求的值,即可求点坐标.【详解】解:(1)抛物线的开口方向向下,顶点的坐标是,抛物线的变化情况是:在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)如图,设直线与对称轴交于点,则.设线段的长为,则,点的坐标可表示为,代入,得.解得(舍,,点的坐标为.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点坐标是本题的关键.22、(1)BD=DC;(2)1;(3)详见解析.【分析】(1)连接AD,由圆周角定理可知∠ADB=90°,证得结论;
(2)根据等腰三角形的性质得到AD平分∠BAC,即∠BAD=∠CAD,可得,则BD=DE,所以BD=DE=DC,得到∠DEC=∠DCE,在等腰△ABC中可计算出∠ABC=71°,故∠DEC=71°,再由三角形内角和定理得出∠EDC的度数,再根据BP∥DE可知∠PBC=∠EDC=30°,进而得出∠ABP的度数,然后利用OB=OP,可知∠OBP=∠OPB,由三角形内角和定理即可得出∠BOP=90°,则△AOP是等腰直角三角形,易得AP的长度;
(3)设OP交AC于点G,由∠BOP=90°可知∠AOG=90°,在Rt△AOG中,由∠OAG=30°可得=,由于==,则=,根据三角形相似的判定可得到△AOG∽△CPG,由相似三角形形的性质可知∠GPC=∠AOG=90°,然后根据切线的判定定理即可得到CP是⊙O的切线.【详解】(1)BD=DC.理由如下:如图1,连接AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC.(2)如图1,连接AP.∵AD是等腰△ABC底边上的中线,∴∠BAD=∠CAD,∴∴BD=DE.∴BD=DE=DC,∴∠DEC=∠DCE,△ABC中,AB=AC,∠A=30°,∴∠DCE=∠ABC=(180°﹣30°)=71°,∴∠DEC=71°,∴∠EDC=180°﹣71°﹣71°=30°,∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠ABP=∠ABC﹣∠PBC=71°﹣30°=41°,∵OB=OP,∴∠OBP=∠OPB=41°,∴∠BOP=90°.∴△AOP是等腰直角三角形.∵AO=AB=1.∴AP=AO=1;(3)设OP交AC于点G,如图1,则∠AOG=∠BOP=90°,在Rt△AOG中,∠OAG=30°,∴=,又∵==,∴=,∴=.又∵∠AGO=∠CGP,∴△AOG∽△CPG,∴∠GPC=∠AOG=90°,∴OP⊥PC,∴CP是⊙O的切线.【点睛】本题考查了圆的综合题;掌握切线的性质,运用切线的判定定理证明圆的切线;运用圆周角定理和相似三角形的判定与性质解决圆中角度与线段的计算;同时记住等腰直角三角形的性质以及含30度的直角三角形三边的关系是关键.23、(1)x=;(2)x=﹣5或x=3【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案;【详解】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=8+4=12,∴x=;(2)∵(x﹣1)(x+3)=12,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.24、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【点睛】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.25、(1)35+;(2)坐板EF的宽度为()cm.【分析】(1)如图,构造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距离即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶股权转让协议
- 公司采购合同
- 产品双方购销合同
- 驾校租赁场地合同
- 兑店转让合同范文
- 湖南省张家界市2024年七年级上学期期中数学试题【附答案】
- 工程项目施工现场管理制度(班组)
- 湖南省衡阳市祁东县2023-2024学年高一下学期7月期末统考政治试卷
- 工程项目管理资料归档类别
- 高考生物一轮复习讲义选修3第2讲细胞工程
- 【青岛版适用】一年级数学上册《期中测试卷》(附答案)
- 统编版一年级语文下册 口语交际 听故事讲故事 小猫种鱼 一等奖创新教学设计
- 各式停水通知范文6篇
- 山西陆合集团恒泰南庄煤业有限公司矿山矿产资源开发、地质环境保护与土地复垦方案
- 2022-2023学年陕西省西安市普通高校对口单招计算机基础自考真题(含答案)
- 留置针埋置方法(宠物临床基础治疗技术)
- 酒店账单-水单-住宿
- 2023年山东春季高考数学试题word版(含答案解析)
- 我的连衣裙【经典绘本】
- 国有资产管理监督概述
- 猴的介绍(终稿)
评论
0/150
提交评论