版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾市翠屏区2025届九年级数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列函数的对称轴是直线的是()A. B. C. D.2.如图,已知圆锥侧面展开图的扇形面积为65cm2,扇形的弧长为10cm,则圆锥母线长是()A.5cm B.10cm C.12cm D.13cm3.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB,∠DCF30°,则EF的长为().A.2 B.3 C. D.4.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④5.小明从图所示的二次函数的图象中,观察得出了下面四条信息:①;②<0;③;④方程必有一个根在-1到0之间.你认为其中正确信息的个数有()A.1个 B.2个 C.3个 D.4个6.下列事件中,是随机事件的是()A.两条直线被第三条直线所截,同位角相等B.任意一个四边形的外角和等于360°C.早上太阳从西方升起D.平行四边形是中心对称图形7.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.8.一元二次方程x2﹣4x=0的根是()A.x1=0,x2=4 B.x1=0,x2=﹣4 C.x1=x2=2 D.x1=x2=49.已知二次函数的解析式为(、、为常数,),且,下列说法:①;②;③方程有两个不同根、,且;④二次函数的图象与坐标轴有三个不同交点,其中正确的个数是().A.1 B.2 C.3 D.410.如图是由个完全相同的小正方形搭成的几何体,如果将小正方体放到小正方体的正上方,则它的()A.主视图会发生改变 B.俯视图会发生改变C.左视图会发生改变 D.三种视图都会发生改变11.下列图形中,不是中心对称图形的是()A. B. C. D.12.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm二、填空题(每题4分,共24分)13.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.14.如图,在网格中,小正方形的边长均为1,点,,都在格点上,则______.15.一元二次方程的解是.16.如图,在△ABC中,∠BAC=90°,∠B=60°,AD⊥BC于点D,则△ABD与△ADC的面积比为________.17.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.18.若⊙P的半径为5,圆心P的坐标为(﹣3,4),则平面直角坐标系的原点O与⊙P的位置关系是_____.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.20.(8分)如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.(1)求抛物线的解析式.(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.21.(8分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=20,,CD⊥AB,垂足为D.(1)求BD的长;(2)设,,用、表示.23.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)24.(10分)如图所示,是的直径,为弦,交于点.若,,.(1)求的度数;(2)求的长度.25.(12分)如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.26.如图,在平面直角坐标系中,点的坐标为,点在第一象限,,点是上一点,,.(1)求证:;(2)求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、∵=∴对称轴为直线x=3,故本选项错误.故选:C.【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.2、D【解析】∴选D3、A【解析】试题分析:由题意可证△AOF≌△COE,EO=FO,AF=CF=CE=AE,四边形AECF是菱形,若∠DCF=30°,则∠FCE=60°,△EFC是等边三角形,∵CD=AB=,∴DF=tan30°×CD=×=1,∴CF=2DF=2×1=2,∴EF=CF=2,故选A.考点:1.矩形及菱形性质;2.解直角三角形.4、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.5、C【详解】观察图象可知,抛物线的对称轴为x=,即,所以2a+3b=0,即①正确;二次函数的图象与x轴有两个交点,所以>0,②错误;由图象可知,当x=-1时,y>0,即a-b+c>0,③正确;由图象可知,二次函数的图象与x轴的一个交点在0和-1之间,所以方程必有一个根在-1到0之间,④正确.正确的结论有3个,故选C.【点睛】本题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.6、A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B,不可能事件.选项C,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.7、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.8、A【分析】把一元二次方程化成x(x-4)=0,然后解得方程的根即可选出答案.【详解】解:∵一元二次方程x2﹣4x=0,∴x(x-4)=0,∴x1=0,x2=4,故选:A.【点睛】本题考查了解一元二次方程,熟悉解一元二次方程的方法是解题的关键.9、B【分析】根据a的符号分类讨论,分别画出对应的图象,根据二次函数的图象逐一分析,找出所有情况下都正确的结论即可.【详解】解:当a>0时,即抛物线的开口向上∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;当a<0时,即抛物线的开口向下∵∴,即当x=1时,y=∴此时抛物线与x轴有两个交点,如图所示∴,故①错误;∵∴,故此时②正确;由图象可知:x1<1,x2>1∴∴,故此时③正确;当c=0时,二次函数的图象与坐标轴有两个不同交点,故④错误;综上所述:①错误;②正确;③正确;④错误,正确的有2个故选B.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系和分类讨论的数学思想是解决此题的关键.10、A【分析】根据从上面看得到的图形事俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】如果将小正方体放到小正方体的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.11、B【分析】将一个图形绕某一点旋转180°后能与自身完全重合的图形是中心对称图形,根据定义依次判断即可得到答案.【详解】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点睛】此题考查中心对称图形的定义,熟记定义并掌握各图形的特点是解题的关键.12、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【详解】设圆锥的底面半径是r,由题意得,,∴r=3cm.故选C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.二、填空题(每题4分,共24分)13、30m【解析】首先在Rt△ABC中,利用正弦值可推出∠CAB=45°,然后由转动角度可得出∠C'AB'=60°,在Rt△C'AB'中利用60°的正弦即可求出B'C'.【详解】再Rt△ABC中,∵∴∠CAB=45°起重机臂逆时针转动到的位置后,∠C'AB'=∠CAB+15°=60°在Rt△C'AB'中,B'C'=m故答案为:30m.【点睛】本题考查了解直角三角形,熟练掌握直角三角形中的边角关系是解题的关键.14、【分析】连接AC,根据网格特点和正方形的性质得到∠BAC=90°,根据勾股定理求出AC、AB,根据正切的定义计算即可.【详解】连接AC,由网格特点和正方形的性质可知,∠BAC=90°,根据勾股定理得,AC=,AB=2,则tan∠ABC=,故答案为:.【点睛】本题考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15、±1.【解析】试题分析:∵x1-4=0∴x=±1.考点:解一元二次方程-直接开平方法.16、1:1【分析】根据∠BAC=90°,可得∠BAD+∠CAD=90°,再根据垂直的定义得到∠ADB=∠CDA=90°,利用三角形的内角和定理可得∠B+∠BAD=90°,根据同角的余角相等得到∠B=∠CAD,利用两对对应角相等两三角形相似得到△ABD∽△CAD,由tanB=tan60°=,再根据相似三角形的面积比等于相似比(对应边的之比)的平方即可求出结果.【详解】:∵∠BAC=90°,
∴∠BAD+∠CAD=90°,
又∵AD⊥BC,
∴∠ADB=∠CDA=90°,
∴∠B+∠BAD=90°,
∴∠B=∠CAD,又∠ADB=∠CDA=90°,
∴△ABD∽△CAD,
∴,
∵∠B=60°,
∴,
∴.
故答案为1:1.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似比即为对应边之比,周长比等于相似比,面积之比等于相似比的平方是解决问题的关键.17、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.18、点O在⊙P上【分析】由勾股定理等性质算出点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:由勾股定理,得OP==5,d=r=5,故点O在⊙P上.故答案为点O在⊙P上.【点睛】此题考查点与圆的位置关系的判断.解题关键在于要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.三、解答题(共78分)19、(1)证明见解析;(2)40°.【分析】(1)连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠ABE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20、(1)y=﹣x2﹣2x+3;(2)点P(,);(3)符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【分析】(1)令y=0,求出点A的坐标,根据抛物线的对称轴是x=﹣1,求出点C的坐标,再根据待定系数法求出抛物线的解析式即可;(2)设点P(m,﹣m2﹣2m+3),利用抛物线与直线相交,求出点B的坐标,过点P作PF∥y轴交直线AB于点F,利用S△ABP=S△PBF+S△PFA,用含m的式子表示出△ABP的面积,利用二次函数的最大值,即可求得点P的坐标;(3)求出点E的坐标,然后求出直线BC、直线BE、直线CE的解析式,再根据以点B、E、C、D为顶点的四边形是平行四边形,得到直线D1D2、直线D1D3、直线D2D3的解析式,即可求出交点坐标.【详解】解:(1)令y=0,可得:x﹣1=0,解得:x=1,∴点A(1,0),∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,∴﹣1×2﹣1=﹣3,即点C(﹣3,0),∴,解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵点P在直线AB上方的抛物线上运动,∴设点P(m,﹣m2﹣2m+3),∵抛物线与直线y=x﹣1交于A、B两点,∴,解得:,∴点B(﹣4,﹣5),如图,过点P作PF∥y轴交直线AB于点F,则点F(m,m﹣1),∴PF=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,∴S△ABP=S△PBF+S△PFA=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)=-(m+)2+,∴当m=时,P最大,∴点P(,).(3)当x=﹣1时,y=﹣1﹣1=﹣2,∴点E(﹣1,﹣2),如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,∵以点B、C、E、D为顶点的四边形是平行四边形,∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,联立得D1(0,3),同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).【点睛】本题考查二次函数的综合应用,解决第(2)小题中三角形面积的问题时,找到一条平行或垂直于坐标轴的边是关键;对于第(3)小题,要注意分类讨论、数形结合的运用,不要漏解.21、(1)23(2)77.5(3)甲学生在该年级的排名更靠前(4)224【分析】(1)根据条形图及成绩在这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【详解】解:(1)在这次测试中,七年级在80分以上(含80分)的有人,故答案为23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,,故答案为77.5;(3)甲学生在该年级的排名更靠前,七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为(人).【点睛】本题主要考查频数分布直方图、中位数及样本估计总体,解题的关键是根据直方图得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.22、(1)9;(2)【分析】(1)根据解直角三角形,先求出CD的长度,然后求出AD,由等角的三角函数值相等,有tan∠DCB=tan∠A,即可求出BD的长度;(2)由(1)可求AB的长度,根据三角形法则,求出,然后求出.【详解】解:(1)∵CD⊥AB,∴∠ADC=∠BDC=90°,在Rt△ACD中,,∴.∴,∴.∵∠ACB=90°,∴∠DCB+∠B=∠A+∠B=90°,∴∠DCB=∠A.∴;(2)∵,∴,又∵,∴.【点睛】本题考查了解直角三角形,向量的运算,勾股定理,解题的关键是熟练掌握解直角三角形求三角形的各边长度.23、4秒【分析】作AB⊥CF于B,根据方向角、勾股定理求出AB的长,根据题意比较得到消防车的警报声对听力测试是否会造成影响;求出造成影响的距离,根据速度计算即可.【详解】解:作AB⊥CF于B,由题意得:∠ACB=60°,AC=120米,则∠CAB=30°∴米,∴米,∵<110,∴消防车的警报声对学校会造成影响,造成影响的路程为米,∵秒,∴对学校的影响时间为4秒.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.24、(1)120°;(2)1.【分析】(1)首先根据∠BAO=30°,AO∥BC利用两直线平行,内错角相等求得∠CBA的度数,然后利用圆周角定理求得∠AOC的度数,从而利用邻补角的定义求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 超市柜台租赁协议
- 公司出租车承包经营协议
- 打架斗殴赔偿协议范文
- 城市房屋共有协议书
- 工程造价管理在线作业
- 工程预结算书
- 四川省成都市2024年七年级上学期期中数学试卷【附答案】
- 广西壮族自治区柳州市柳江区2024年七年级上学期期中数学试题【附答案】
- 出租场地安全管理协议书
- 2023学年齐齐哈尔市龙江县八年级语文上学期期中试卷附答案解析
- 乳腺癌科普讲座课件
- 2022年《国民经济行业分类》
- 通止规设计公差自动计算表
- 实验二 油菜考种
- 胃癌淋巴结清扫ppt课件(PPT 39页)
- 汽车交货方案及质保措施
- 06竣工财务决算审计工作底稿(试行)
- 人教版九年级初三上册期中考试化学试卷
- 电加热管制作工艺的设计
- 双港垃圾焚烧发电厂工艺介绍
- 植物体的结构层次通用课件
评论
0/150
提交评论