版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列二次根式中,不是最简二次根式的是()A. B. C. D.2.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛,顶层一个,以下各层堆成六边形,逐层每边增加一个花盆,则第七层的花盆的个数是()A.91 B.126 C.127 D.1693.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤4.下列调查中,最适合采用抽样调查方式的是()A.对某飞机上旅客随身携带易燃易爆危险物品情况的调查B.对我国首艘国产“002型”航母各零部件质量情况的调查C.对渝北区某中学初2019级1班数学期末成绩情况的调查D.对全国公民知晓“社会主义核心价值观”内涵情况的调查5.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为()A. B. C. D.6.下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上 B.对称轴是y轴C.有最低点 D.在对称轴右侧的部分从左往右是下降的7.数学兴趣小组的同学们想利用树影测量树高.课外活动时他们在阳光下测得一根长为1米的竹竿的影子是0.9米,同一时刻测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的台阶上,且影子的末端刚好落在最后一级台阶的上端C处,他们测得落在地面的影长为1.1米,台阶总的高度为1.0米,台阶水平总宽度为1.6米.则树高为()A.3.0m B.4.0m C.5.0m D.6.0m8.将方程x2-6x+3=0左边配成完全平方式,得到的方程是(
)A.(x-3)2=-3
B.(x-3)2=6
C.(x-3)2=3
D.(x-3)2=129.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.2410.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根二、填空题(每小题3分,共24分)11.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.12.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.13.如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________.(中间横框所占的面积忽略不计)14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.15.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)16.已知二次函数(),与的部分对应值如下表所示:-10123461-2-3-2下面有四个论断:①抛物线()的顶点为;②;③关于的方程的解为,;④当时,的值为正,其中正确的有_______.17.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.18.如图,点,,都在上,连接,,,,,,则的大小是______.三、解答题(共66分)19.(10分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.20.(6分)关于的一元二次方程(1)若方程的一个根为1,求方程的另一个根和的值(2)求证:不论取何实数,方程总有两个不相等的实数根.21.(6分)周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.22.(8分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.求证:是的切线;已知的半径是.①若是的中点,,则;②若,求的长.23.(8分)如图,已知点是坐标原点,两点的坐标分别为,.(1)以点为位似中心在轴的左侧将放大到原图的2倍(即新图与原图的相似比为2),画出对应的;(2)若内部一点的坐标为,则点对应点的坐标是______;(3)求出变化后的面积______.24.(8分)(1)计算:;(2)解方程:.25.(10分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.26.(10分)如图将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,(1)求证:△AME∽△BEC.(2)若△EMC∽△AME,求AB与BC的数量关系.
参考答案一、选择题(每小题3分,共30分)1、C【解析】根据最简二次根式的定义对各选项分析判断即可.【详解】解:A、是最简二次根式,不合题意,故本选项错误;B、是最简二次根式,不合题意,故本选项错误;C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;D、是最简二次根式,不合题意,故本选项错误;故选C.【点睛】本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.2、C【分析】由图形可知:第一层有1个花盆,第二层有1+6=7个花盆,第三层有1+6+12=19个花盆,第四层有1+6+12+18=37个花盆,…第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,要求第7层个数,由此代入求得答案即可.【详解】解:∵第一层有1个花盆,
第二层有1+6=7个花盆,
第三层有1+6+12=19个花盆,
第四层有1+6+12+18=37个花盆,
…
∴第n层有1+6×(1+2+3+4+…+n-1)=1+3n(n-1)个花盆,
∴当n=7时,
∴花盆的个数是1+3×7×(7-1)=1.
故选:C.【点睛】此题考查图形的变化规律,解题关键在于找出数字之间的运算规律,利用规律解决问题.3、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.4、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,进行判断.【详解】A、对某飞机上旅客随身携带易燃易爆危险物品情况的调查适合采用全面调查方式;B、对我国首艘国产“002型”航母各零部件质量情况的调查适合采用全面调查方式;C、对渝北区某中学初2019级1班数学期末成绩情况的调查适合采用全面调查方式;D、对全国公民知晓“社会主义核心价值观”内涵情况的调查适合采用抽样调查方式;故选:D.【点睛】本题主要考查抽样调查的意义和特点,理解抽样调查的意义是解题的关键.5、B【解析】利用位似性质和网格特点,延长CA到A1,使CA1=2CA,延长CB到B1,使CB1=2CB,则△A1B1C1满足条件;或延长AC到A1,使CA1=2CA,延长BC到B1,使CB1=2CB,则△A1B1C1也满足条件,然后写出点B1的坐标.【详解】解:由图可知,点B的坐标为(3,-2),
如图,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,
则点B1的坐标为(4,0)或(-8,0),位于题目图中网格点内的是(4,0),
故选:B.【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的位似比画出图形,注意有两种情况.6、D【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x)2+,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=,故选项B错误;当x=时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.7、B【分析】根据同一时刻物高与影长成正比例列式计算即可.【详解】根据同一时刻物高与影长成正比例可得,如图,∴=.∴AD=1.∴AB=AD+DB=1+1=2.故选:B.【点睛】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解,加上DB的长即可.解此题的关键是找到各部分以及与其对应的影长.8、B【解析】试题分析:移项,得x2-1x=-3,等式两边同时加上一次项系数一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故选B.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.9、C【分析】根据菱形的对角线互相垂直且平分这一性质解题即可.【详解】解:∵菱形的对角线互相垂直且平分,∴勾股定理求出菱形的边长=5,∴菱形的周长=20,故选C.【点睛】本题考查了菱形对角线的性质,属于简单题,熟悉概念是解题关键.10、D【解析】∵△=>0,∴方程有两个不相等的实数根.故选D.二、填空题(每小题3分,共24分)11、上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.12、3【分析】根据线段垂直平分线的性质和折叠的性质得点B′与点A重合,BE=AE,进而可以求解.【详解】在△ABC中,∠ACB=90°,AC=6,AB=1.根据勾股定理,得:BC=2.连接AE,由作图可知:MN是线段AB的垂直平分线,∴BE=AE,BD=AD,由翻折可知:点B′与点A重合,∴△B′CE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案为3.【点睛】本题主要考查垂直平分线的性质定理和折叠的性质,通过等量代换把△B′CE的周长化为AC+BC的值,是解题的关键.13、【分析】设窗的高度为xm,宽为m,根据矩形面积公式列出二次函数求函数值的最大值即可.【详解】解:设窗的高度为xm,宽为.所以,即,当x=2m时,S最大值为.故答案为:.【点睛】本题考查二次函数的应用.能熟练将二次函数化为顶点式,并据此求出函数的最值是解决此题的关键.14、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.15、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.16、①③④【分析】根据表格,即可判断出抛物线的对称轴,从而得到顶点坐标,即可判断①;根据抛物线的对称性即可判断②;根据表格中函数值为-2时,对应的x的值,即可判断③;根据二次函数的增减性即可判断④.【详解】解:①根据表格可知:抛物线()的对称轴为x=2,∴抛物线()的顶点为,故①正确;②根据抛物线的对称性可知:当x=4和x=0时,对应的函数值相同,∴m=1,故②错误;③由表格可知:对于二次函数,当y=-2时,对应的x的值为1或3∴关于的方程的解为,,故③正确;④由表格可知:当x<2时,y随x的增大而减小∵,抛物线过(0,1)∴当时,>1>0∴当时,的值为正,故④正确.故答案为:①③④.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的对称性、顶点坐标与最值、二次函数与一元二次方程的关系和二次函数的增减性是解决此题的关键.17、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.18、【分析】根据题意可知△ABC是等腰三角形,∠BAO=20°,可得出∠AOB的度数,根据同弧所对的圆周角是圆心角的一半即可得出答案.【详解】解:∵AO=OB∴△AOB是等腰三角形∵∠BAO=20°∴∠OBA=20°,∠AOB=140°∵∠AOB=2∠ACB∴∠ACB=70°故答案为:70°【点睛】本题主要考查的是同弧所对的圆周角是圆心角的一半以及圆的基本性质,掌握这两个知识点是解题的关键.三、解答题(共66分)19、(1);(1)或【分析】(1)将x=1代入求得A(1,3),将A(1,3)代入求得,解方程组得到B点的坐标为(-6,-1);
(1)反比例函数与一次函数的交点坐标即可得到结论.【详解】解:(1)将代入,得,∴.将代入,得,∴,∴,解得(舍去)或.将代入,得,∴.(1)由图可知,当时,或.【点睛】此题考查反比例函数与一次函数的交点问题,正确的理解题意是解题的关键.20、(1),另一个根是;(2)详见解析.【分析】(1)代入x=1求出m值,从而得出方程,解方程即可;
(2)根据方程的系数结合根的判别式,即可得出△>0,由此可证出:不论m取何实数,此方程都有两个不相等的实数根.【详解】解:(1)把代入原方程得解得:当时,原方程为解得:∴方程的另一个根是(2)证明:∵∴∴不论取何实数,此方程都有两个不相等的实数根.【点睛】本题考查了根的判别式以及一元二次方程的解,由判别式的符号得到方程根的情况是解题的关键.21、20米【分析】先利用CB⊥AD,ED⊥AD得到∠CBA=∠EDA=90,由此证明△ABC∽△ADE,得到,将数值代入即可求得AB.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90,∵∠CAB=∠EAD,∴△ABC∽△ADE,∴,∵AD=AB+BD,BD=7,BC=1,DE=1.35,∴,∴AB=20,即河宽为20米.【点睛】此题考查相似三角形的实际应用,解决河宽问题.22、(1)详见解析;(2)①;②【分析】(1)延长交于,连接.得出,再利用角之间的关系可得出,即,结论即可得证.(2)①利用勾股定理即可求解②由知,,根据对应线段成比例,可得出AB,AD的值,从而可求出AI的长.【详解】解:(1)证明:延长交于,连接.是的内心,平分平分...又,....为的切线.①∵∴.②解:由知,..∴.【点睛】本题考查的知识点有圆的切线的判定定理,相似三角形的判定与性质,综合性较强,利用数形结合的方法可以更好的理解题目,有助于找出解题的方向.23、(1)见解析;(2);(3)10【分析】(1)把B、C的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC的面积,然后利用相似的性质把△OBC的面积乘以4得到△OBꞌCꞌ的面积.【详解】解:(1)如图,为所作;(2)点对应点的坐标是;(3)的面积.【点睛】本题考查了作图-位似变换:熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.24、(1)0;(2),.【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)方程利用公式法求出解即可.【详解】解:(1)原式.(2),在这里,,.,∴,∴,.【点睛】此题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高二数学教学工作计划10篇
- 苏教版语文二年级下册教案
- 大学生社会实践自我鉴定
- 小班科学小草主题教案
- 2025湖南农民工劳动合同范本
- 2025会展服务合同
- 成年人早起晨读活动
- 2025深圳市劳动合同法范文
- 2024年创意市集摊位租赁及场地管理协议3篇
- 金融员工试用期工作总结范文
- 上海交通大学2016年622物理化学(回忆版)考研真题
- 2023老年陪诊服务规范
- 征信数据质量自查报告银行
- PICC和CVC规范化维护及注意事项
- 人教部编版三年级上册语文【选择题】专项复习训练练习100题
- 停车场车牌识别道闸系统施工安装
- 巴以冲突课件
- 法定代表人身份证明书-模板
- 酒店监控室管理制度
- 工程部研发部KPI绩效考核指标汇总(定性)
- 光伏斜屋顶计算书屋顶光伏电站项目荷载计算书
评论
0/150
提交评论