版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A. B. C. D.2.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.3.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.14.如图,在扇形纸片AOB中,OA=10,ÐAOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为()A.12π B.11π C.10π D.10π+55.如图,将Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得点C′与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的周长为()A.5 B.6 C.7 D.86.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m27.关于二次函数,下列说法错误的是()A.它的图象开口方向向上 B.它的图象顶点坐标为(0,4)C.它的图象对称轴是y轴 D.当时,y有最大值48.如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为()A.3π B.π+1 C.π D.29.已知正六边形的边心距是,则正六边形的边长是()A. B. C. D.10.下列事件中,必然事件是()A.抛掷个均匀的骰子,出现点向上 B.人中至少有人的生日相同C.两直线被第三条直线所截,同位角相等 D.实数的绝对值是非负数二、填空题(每小题3分,共24分)11.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.12.若,则的值是______.13.甲、乙两同学在最近的5次数学测验中数学成绩的方差分别为甲,乙,则数学成绩比较稳定的同学是____________14.如图,在半径为的中,的长为,若随意向圆内投掷一个小球,小球落在阴影部分的概率为______________.15.反比例函数的图象在每一象限内,y随着x的增大而增大,则k的取值范围是______.16.某数学兴趣小组利用太阳光测量一棵树的高度(如图),在同一时刻,测得树的影长为6米,小明的影长为1米,已知小明的身高为1.5米,则树高为_________米.17.如图,在Rt△ABC中,∠ACB=90º,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,N是A′B′的中点,连接MN,若BC=2cm,∠ABC=60°,则线段MN的最大值为_____.18.正五边形的每个内角为______度.三、解答题(共66分)19.(10分)已知关于x的方程x2﹣(m+2)x+2m=1.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.20.(6分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)21.(6分)如图,直线与双曲线在第一象限内交于两点,已知.(1)求的值及直线的解析式.(2)根据函数图象,直接写出不等式的解集.(3)设点是线段上的一个动点,过点作轴于点是轴上一点,当的面积为时,请直接写出此时点的坐标.22.(8分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.23.(8分)如图,在中,,以为直径作交于点.过点作,垂足为,且交的延长线于点.(1)求证:是的切线;(2)若,,求的长.24.(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.25.(10分)已知在△ABC中,AB=BC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=DC;(2)若CD=6,EC=4,求AB的长.26.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.
参考答案一、选择题(每小题3分,共30分)1、B【解析】∵AC>BC,∴AC是较长的线段,根据黄金分割的定义可知:=≈0.618,故A、C、D正确,不符合题意;AC2=AB•BC,故B错误,符合题意;故选B.2、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.3、B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S四边形ECFG=4S△BGE,故④错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.4、A【分析】点O所经过的路线是三段弧,一段是以点B为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB一样长的线段,最后一段是以点A为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O所经过的路线长=90π×10故选A.【点睛】解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.5、A【分析】由三角形面积公式可求C'E的长,由相似三角形的性质可求解.【详解】解:如图,过点C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延长C'E交A'B'于点F,连接AC',BC',CC',∵点C'与△ABC的内心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,
∴C'E=C'G=C'H,
∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,
∵将Rt△ABC平移到△A'B'C'的位置,
∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3
∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'
∴△C'MN∽△C'A'B',∴C阴影部分=C△C'A'B'×=(5+3+4)×=5.故选A.【点睛】本题考查了三角形的内切圆和内心,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.6、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.7、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵,∴抛物线开口向上,对称轴为直线x=0,顶点为(0,4),当x=0时,有最小值4,故A、B、C正确,D错误;故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).8、C【分析】根据题意和图形可以求得的长,然后根据图形,可知阴影部分的面积是半圆的面积减去扇形的面积,从而可以解答本题.【详解】解:在中,,,,图中阴影部分的面积为:,故选:C.【点睛】本题考查扇形面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9、A【分析】如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB,然后求出正六边形的中心角,证出△OAB为等边三角形,然后利用等边三角形的性质和锐角三角函数即可求出结论.【详解】解:如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB正六边形的中心角∠AOB=360°÷6=60°∴△OAB为等边三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六边形的边长是.故选A.【点睛】此题考查的是根据正六边形的边心距求边长,掌握中心角的定义、等边三角形的判定及性质和锐角三角函数是解决此题的关键.10、D【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【详解】A.抛掷个均匀的骰子,出现点向上的概率为,错误.B.367人中至少有人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D.实数的绝对值是非负数,正确.故答案为:D.【点睛】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.二、填空题(每小题3分,共24分)11、1【解析】连接BD.根据圆周角定理可得.【详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.12、【分析】根据合比性质:,可得答案.【详解】由合比性质,得,故答案为:.【点睛】本题考查了比例的性质,利用合比性质是解题关键.13、甲【分析】根据方差的意义即方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定进行分析即可.【详解】解:由于甲<乙,则数学成绩较稳定的同学是甲.故答案为:甲.【点睛】本题考查方差的意义.注意掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14、【分析】根据圆的面积公式和扇形的面积公式分别求得各自的面积,再根据概率公式即可得出答案.【详解】∵圆的面积是:,扇形的面积是:,∴小球落在阴影部分的概率为:.故答案为:.【点睛】本题主要考查了几何概率问题,用到的知识点为:概率=相应面积与总面积之比.15、【分析】利用反比例函数图象的性质即可得.【详解】由反比例函数图象的性质得:解得:.【点睛】本题考查了反比例函数图象的性质,对于反比例函数有:(1)当时,函数图象位于第一、三象限,且在每一象限内,y随x的增大而减小;(2)当时,函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大.16、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,对应比值相等进而得出答案.【详解】解:根据相同时刻的物高与影长成比例.设树的高度为,则,解得:.故答案为:1.【点睛】此题考查相似三角形的应用,解题关键在于掌握其性质定义.17、3cm【分析】连接CN.根据直角三角形斜边中线的性质求出,利用三角形的三边关系即可解决问题.【详解】连接CN.在Rt△ABC中,∵∠ACB=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵NB′=NA′,∴,∵CM=BM=1,∴MN≤CN+CM=3,∴MN的最大值为3,故答案为3cm.【点睛】本题考查旋转的性质,直角三角形斜边中线的性质,三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18、1【分析】先求出正五边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=1°.故答案为:1.【点睛】本题主要考查多边形的内角和计算公式,以及正多边形的每个内角都相等等知识点.三、解答题(共66分)19、(2)2;(2)见解析【分析】(2)将x=2代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【详解】(2)将x=2代入原方程可得2﹣(m+2)+2m=2,解得:m=2.(2)由题意可知:△=(m+2)2﹣4×2m=(m﹣2)2≥2,不论m取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用根的判别式,本题属于基础题型.20、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH=≈=20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、(1),(2)解集为或(3)【分析】(1)先把B(2,1)代入,求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出直线AB的解析式;(2)直接利用函数图象得出结论;(3)先设出点P坐标,进而表示出△PED的面积等于,解之即可得出结论.【详解】解:(1):∵点在双曲线上,∴,∴双曲线的解析式为.∵在双曲线,∴,∴.∵直线过两点,∴,解得∴直线的解析式为(2)根据函数图象,由不等式与函数图像的关系可得:双曲线在直线上方的部分对应的x范围是:或,∴不等式的解集为或.(3)点的坐标为.设点,且,则.∵当时,解得,∴此时点的坐标为.【点睛】此题是反比例函数综合题,主要考查了一次函数和反比例函数的图象和性质,待定系数法,三角形的面积公式,求出直线AB的解析式是解本题的关键.22、(1)不可能;随机;;(2)【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得.【详解】(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为,故答案为不可能,随机,;(2)画树状图如下:由树状图可知共12种可能,其中“小惠被抽中”有6种可能,所以“小惠被抽中”的概率是:.【点睛】本题考查了随机事件、不可能事件、列表或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23、(1)见解析;(2)BD长为1.【分析】(1)连接OD,AD,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
(2)根据等腰三角形三线合一的性质证得∠BAD=∠BAC=30°,由30°的直角三角形的性质即可求得BD.【详解】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△BAC的中位线,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,∴BD=AB=×10=1,即BD长为1.【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、等腰三角形的性质,圆的切线的判定,30°的直角三角形的性质,掌握本题的辅助线的作法是解题的关键.24、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度板梁运输与吊装项目管理与协调服务合同3篇
- 2024年济南市房地产交易标准协议
- 教育行业移民咨询服务合同
- 2024版房屋装修合同3篇
- 2025年度仓储仓单质押监管与仓储服务合作协议3篇
- 活动赞助与广告推广协议
- 2024年经典室内设计装修合同
- 餐饮加盟店合同书范本
- 2025年度花卉研发与种植基地合作合同3篇
- 2024年销售代理合同详细信息
- 组织文化与领导力
- 电子商务客服全套培训方案
- 《产品价值点》课件
- 供货商合同协议书简单版正规范本(通用版)
- 2023迎春帮困活动总结
- 工程全过程造价咨询服务方案(技术方案)
- 庆铃国五新车型概况课件
- 缺血性脑卒中静脉溶栓护理
- GB/T 7025.1-2023电梯主参数及轿厢、井道、机房的型式与尺寸第1部分:Ⅰ、Ⅱ、Ⅲ、Ⅵ类电梯
- 建设工程总承包计价规范
- 设计开发(更改)评审记录
评论
0/150
提交评论