




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省张家界市铄武学校2025届数学九上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+x2 B.y=(2x+1)2 C.y=(x﹣1)2 D.y=2x22.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=03.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.4.下列事件是必然事件的为()A.明天早上会下雨 B.任意一个三角形,它的内角和等于180°C.掷一枚硬币,正面朝上 D.打开电视机,正在播放“义乌新闻”5.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.106.如图,等边的边长为是边上的中线,点是边上的中点.如果点是上的动点,那么的最小值为()A. B. C. D.7.如图是由4个大小相同的小正方体摆成的几何体,它的左视图是()A. B. C. D.8.一元二次方程的根的情况为()A.没有实数根B.只有一个实数根C.有两个不相等的实数根D.有两个相等的实数根9.如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为()A.28 B.24 C.20 D.1610.如图,AB为⊙O的直径,C、D是⊙O上的两点,,弧AD=弧CD.则∠DAC等于()A. B. C. D.二、填空题(每小题3分,共24分)11.若正六边形外接圆的半径为4,则它的边长为_____.12.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是______.13.从一副扑克牌中的13张黑桃牌中随机抽取一张,它是王牌的概率为____.14.抛物线的顶点坐标是__________.15.小华在距离路灯6米的地方,发现自己在地面上的影长是2米,若小华的身高为1.6米,那么路灯离地面的高度是_____米.16.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.17.菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=_____cm.18.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.三、解答题(共66分)19.(10分)如图,在中,,点为上一点且与不重合.,交于.(1)求证:;(2)设,求关于的函数表达式;(3)当时,直接写出_________.20.(6分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.21.(6分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.22.(8分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.23.(8分)如图,已知抛物线y=x2+2x的顶点为A,直线y=x+2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.24.(8分)如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是该抛物线上一点(1)若,求直线的函数表达式(2)若点将线段分成的两部分,求点的坐标(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标25.(10分)九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分,则成绩较为整齐的是哪个队?26.(10分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?
参考答案一、选择题(每小题3分,共30分)1、D【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=1(x﹣1)1+3中,a=1.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.2、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.3、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.4、B【分析】直接利用随机事件以及必然事件的定义分析得出答案.【详解】解:A、明天会下雨,是随机事件,不合题意;B、任意一个三角形,它的内角和等于180°,是必然事件,符合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、打开电视机,正在播放“义乌新闻”,是随机事件,不合题意.故选:B.【点睛】此题主要考查了随机事件以及必然事件,正确掌握相关定义是解题关键.5、B【解析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3个单位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.6、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点G.∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对称点为点B,∴BE就是EP+CP的最小值.∴G点就是所求点,即点G与点P重合,∵等边△ABC的边长为8,E为AC的中点,∴CE=4,BE⊥AC,在直角△BEC中,BE=,∴EP+CP的最小值为,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.7、C【分析】根据左视图即从物体的左面观察得得到的视图,进而得出答案.【详解】如图所示,该几何体的左视图是:.故选C.【点睛】此题主要考查了几何体的三视图;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.8、A【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=4﹣4×5=﹣16<1.故选:A.【点睛】本题考查了一元二次方程根的判别式,解答本题的关键是熟练掌握一元二次方程根的判别式.9、B【分析】过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,根据全等三角形的性质得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到结论.【详解】解:过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四边形ACDE、四边形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF•EM,S△ABC=AB•CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴图中阴影部分的面积=3×8=24,故选:B.【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键.10、C【分析】利用圆周角定理得到,则,再根据圆内接四边形的对角互补得到,又根据弧AD=弧CD得到,然后根据等腰三角形的性质和三角形的内角和定理可得出的度数.【详解】∵AB为⊙O的直径∵弧AD=弧CD故选:C.【点睛】本题考查了圆周角定理、圆内接四边形的性质、等腰三角形的性质等知识点,利用圆内接四边形的性质求出的度数是解题关键.二、填空题(每小题3分,共24分)11、1【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.【详解】正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于1,则正六边形的边长是1.故答案为:1.【点睛】本题考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题的关键.12、【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可.【详解】∵某定弦抛物线的对称轴为直线∴某定弦抛物线过点∴该定弦抛物线的解析式为将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是即故答案为:.【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键.13、1【分析】根据是王牌的张数为1可得出结论.【详解】∵13张牌全是黑桃,王牌是1张,∴抽到王牌的概率是1÷13=1,故答案为:1.【点睛】本题考查了概率的公式计算,熟记概率=所求情况数与总情况数之比是解题的关键.14、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.15、6.1【解析】解:设路灯离地面的高度为x米,根据题意得:,解得:x=6.1.故答案为6.1.16、【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17、1【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【详解】解:如图,∵菱形ABCD的周长是20cm,对角线AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案为:1.【点睛】本题考查了菱形的性质,属于简单题,熟悉菱形对角线互相垂直且平分是解题关键.18、1【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明OAB∽OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为1.【详解】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴OAB∽OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为:1.【点睛】本题综合考查了相似三角形的判定与性质,平行线的性质,线段的中点坐标,反比例函数的性质,三角形的面积公式等知识,重点掌握反比例函数的性质,难点根据三角形的面积求反比例函数系数的值.三、解答题(共66分)19、(1)详见解析;(2);(3)1【分析】(1)先根据题意得出∠B=∠C,再根据等量代换得出∠ADB=∠DEC即可得证;(2)根据相似三角形的性质得出,将相应值代入化简即可得出答案;(3)根据相似三角形的性质得出,再根据已知即可证明AE=EC从而得出答案.【详解】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC=∵∠ADE=45°,∴∠ADB+∠CDE=∠CDE+∠DEC=135°∴∠ADB=∠DEC,∴△ABD∽△DCE(2)∵△ABD∽△DCE,∴,∵BD=x,AE=y,则DC=,代入上式得:,∴,即(3),在中,【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握定理是解题的关键.20、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.21、(1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)①根据题意,得,即.②根据题意,得,解得.,,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.①当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;③当时,,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.22、(1);(2)【分析】(1)根据小刚从印有数字1,3,4的三个小球中摸出印有数字3的小球进行求解概率;(2)根据题意画出树状图,进而求解.【详解】解:(1)由题意知,小刚摸出的小球上的数字是3的概率为;(2)画树状图如下:一共有12种等可能情况,有三种情况满足条件,分别为:,,,∴点在函数的图象上的概率为.【点睛】本题考查等可能条件下的概率计算公式,画树状图或列表求解概率,熟知画树状图或列表法是解题的关键.23、(1)B(﹣2,0),C(1,3);(2)见解析;(3)存在这样的点P,坐标为(﹣,﹣)或(﹣,)或(﹣5,15).【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;
(2)根据勾股定理可得∠ABC=90°,进而可求△ODC∽△ABC.(3)设出p点坐标,可表示出M点坐标,利用三角形相似可求得p点的坐标.【详解】(1)解:y=x2+2x=(x+1)2﹣1,∴顶点A(﹣1,﹣1);由,解得:或∴B(﹣2,0),C(1,3);(2)证明:∵A(﹣1,﹣1),B(﹣2,0),C(1,3),∴AB=,BC=,AC=,∴AB2+BC2=AC2,,∴∠ABC=90°,∵OD=1,CD=3,∴=,∴,∠ABC=∠ODC=90°,∴△ODC∽△ABC;(3)存在这样的P点,设M(x,0),则P(x,x2+2x),∴OM=|x|,PM=|x2+2x|,当以O,P,M为顶点的三角形与△ABC相似时,有或,由(2)知:AB=,CB=,①当时,则=,当P在第二象限时,x<0,x2+2x>0,∴,解得:x1=0(舍),x2=-,当P在第三象限时,x<0,x2+2x<0,∴=,解得:x1=0(舍),x2=-,②当时,则=3,同理代入可得:x=﹣5或x=1(舍),综上所述,存在这样的点P,坐标为(-,-)或(-,)或(﹣5,15).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.24、(1);(2)或;(3),,,【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)分和两种情况根据点A、点B在直线y=x+2上列式求解即可;(3)分和两种情况,利用相似三角形的性质列式求解即可.【详解】(1)如图①,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色能源技术研发合作合同
- 医疗器械代理注册合同书
- 正式借款合同
- 城市绿化项目实施与验收合同
- 节电小贴士(教学设计)-2023-2024学年四年级下册综合实践活动沪科黔科版
- 第21课《庄子二则-北冥有鱼》教学设计 2023-2024学年统编版语文八年级下册
- 社区团购仓储租赁协议
- 第5课计算机的资源管理 教学设计
- 律师事务所劳动仲裁合同8篇
- 无产权房屋买卖合同范本5篇
- 工程结构质量特色介绍
- 超全六年级阴影部分的面积(详细答案)
- 提高护士对抢救药品知晓率PDCA案例精编版
- 八字万能速查表(有图)
- 清华大学MBA课程——运筹学
- 架桥机安全教育培训试卷及答案(共3页)
- 湿法冶金浸出净化和沉积PPT课件
- 通信杆路工程施工
- 初中物理光学经典题(共23页)
- 化学反应工程流固相非催化反应PPT课件
- 二次回路和电缆编号原则
评论
0/150
提交评论