版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市枣庄市第四十一中学2025届数学九上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知三角形两边长为4和7,第三边的长是方程的一个根,则第三边长是()A.5 B.5或11 C.6 D.112.如图,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.3.用一块长40cm,宽28cm的矩形铁皮,在四个角截去四个全等的正方形后,折成一个无盖的长方形盒子,若折成的长方体的底面积为,设小正方形的边长为xcm,则列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3604.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130° B.50° C.65° D.100°5.计算的结果是()A. B. C. D.6.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.7.如图坐标系中,O(0,0),A(3,3),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:88.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=09.已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是()A. B. C. D.10.如图,AB是的直径,点C,D是圆上两点,且=28°,则=()A.56° B.118° C.124° D.152°11.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.12.已知两个相似三角形的相似比为2∶3,较小三角形面积为12平方厘米,那么较大三角形面积为()A.18平方厘米 B.8平方厘米 C.27平方厘米 D.平方厘米二、填空题(每题4分,共24分)13.阅读对话,解答问题:分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_________.14.如图,把置于平面直角坐标系中,点A的坐标为,点B的坐标为,点P是内切圆的圆心.将沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2019次滚动后,内切圆的圆心的坐标是________.15.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.16.我市某公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为.17.已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是______.18.对于两个不相等的实数a、b,我们规定max{a、b}表示a、b中较大的数,如max{1,1}=1.那么方程max{1x,x﹣1}=x1﹣4的解为.三、解答题(共78分)19.(8分)已知:如图,抛物线与轴交于点,,与轴交于点.(1)求抛物线的解析式;(2)如图,点是线段上方抛物线上的一个动点,连结、.设的面积为.点的横坐标为.①试求关于的函数关系式;②请说明当点运动到什么位置时,的面积有最大值?③过点作轴的垂线,交线段于点,再过点做轴交抛物线于点,连结,请问是否存在点使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.20.(8分)解一元二次方程:x2﹣2x﹣3=1.21.(8分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.(1)求出的值;(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.22.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=3,AF=2,求AE的长.23.(10分)解方程:(1)2x2+3x﹣1=0(2)24.(10分)如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)25.(12分)如图,在A岛周围50海里水域有暗礁,一轮船由西向东航行到O处时,发现A岛在北偏东60°方向,轮船继续正东方向航行40海里到达B处发现A岛在北偏东45°方向,该船若不改变航向继续前进,有无触礁的危险?(参考数据:)26.如图,广场上空有一个气球,地面上点间的距离.在点分别测得气球的仰角为,,求气球离地面的高度.(精确到个位)(参考值:,,,)
参考答案一、选择题(每题4分,共48分)1、A【分析】求出方程的解x1=11,x2=1,分为两种情况:①当x=11时,此时不符合三角形的三边关系定理;②当x=1时,此时符合三角形的三边关系定理,即可得出答案.【详解】解:x2-16x+11=0,
(x-11)(x-1)=0,
x-11=0,x-1=0,
解得:x1=11,x2=1,
①当x=11时,
∵4+7=11,
∴此时不符合三角形的三边关系定理,
∴11不是三角形的第三边;
②当x=1时,三角形的三边是4、7、1,
∵此时符合三角形的三边关系定理,
∴第三边长是1.
故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理的应用,注意:求出的第三边的长,一定要看看是否符合三角形的三边关系定理,即a+b>c,b+c>a,a+c>b,题型较好,但是一道比较容易出错的题目.2、A【解析】直接利用锐角三角函数关系得出sinB的值.【详解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故选A.【点睛】此题主要考查了锐角三角函数关系,正确把握定义是解题关键.3、B【分析】由题意设剪掉的正方形的边长为xcm,根据长方体的底面积为列出方程即可.【详解】解:设剪掉的正方形的边长为xcm,则(28﹣2x)(40﹣2x)=1.故选:B.【点睛】本题考查一元二次方程的应用,解答本题的关键是仔细审题并建立方程.4、D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5、C【分析】根据二次根式的性质先化简,再根据幂运算的公式计算即可得出结果.【详解】解:==,故选C.【点睛】本题考查了二次根式的性质和同底数幂的乘方,熟练掌握二次根式的性质和同底数幂的乘方进行化简是解题的关键.6、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD,,,,,.故选D.【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.7、B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=1,OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A作AF⊥OB于F,如图所示:∵A(1,1),B(6,0),∴AF=1,OF=1,OB=6,∴BF=1,∴OF=BF,∴AO=AB,∵tan∠AOB=,∴∠AOB=60°,∴△AOB是等边三角形,∴∠AOB=∠ABO=60°,∵将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,∴∠CED=∠OAB=60°,∵∠OCE+∠COE=∠OCE+60°=∠CED+∠DEB=60°+∠DEB,∴∠OCE=∠DEB,∴△CEO∽△EDB,∴==,∵OE=,∴BE=OB﹣OE=6﹣=,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,则,,∴6b=10a﹣5ab①,24a=10b﹣5ab②,②﹣①得:24a﹣6b=10b﹣10a,∴,即AC:AD=2:1.故选:B.【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB是等边三角形是解题的关键.8、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.9、A【分析】分别求出各选项点关于直线对称点的坐标,代入函数验证是否在其图象上,从而得出答案.【详解】解:A.点关于对称的点为点,而在函数上,点在图象上;B.点关于对称的点为点,而不在函数上,点不在图象上;同理可C、D不在图象上.故选:.【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.10、C【分析】根据一条弧所对的圆周角是它所对的圆心角的一半可得∠BOC的度数,再根据补角性质求解.【详解】∵∠CDB=28°,∴∠COB=2∠CDB=2×28°=56°,∴∠AOC=180°-∠COB=180°-56°=124°.故选:C【点睛】本题考查圆周角定理,根据定理得出两角之间的数量关系是解答此题的关键.11、D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.12、C【分析】根据相似三角形面积比等于相似比的平方即可解题【详解】∵相似三角形面积比等于相似比的平方故选C【点睛】本题考查相似三角形的性质,根据根据相似三角形面积比等于相似比的平方列出式子即可二、填空题(每题4分,共24分)13、.【解析】试题分析:用列表法易得(a,b)所有情况,看使关于x的一元二次方程x3-ax+3b=3有实数根的情况占总情况的多少即可.试题解析:(a,b)对应的表格为:∵方程x3-ax+3b=3有实数根,∴△=a3-8b≥3.∴使a3-8b≥3的(a,b)有(3,3),(4,3),(4,3),∴p(△≥3)=.考点:3.列表法与树状图法;3.根的判别式.14、【分析】由勾股定理得出AB=,求出Rt△OAB内切圆的半径=1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次为一个循环,由2019÷3=673,即可得出结果.【详解】解:∵点A的坐标为(0,4),点B的坐标为(3,0),∴OA=4,OB=3,∴AB=,∴Rt△OAB内切圆的半径=,∴P的坐标为(1,1),∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,∴P3(3+5+4+1,1),即(13,1),每滚动3次为一个循环,∵2019÷3=673,∴第2019次滚动后,Rt△OAB内切圆的圆心P2019的横坐标是673×(3+5+4)+1,即P2019的横坐标是8077,∴P2019的坐标是(8077,1);故答案为:(8077,1).【点睛】本题考查了三角形的内切圆与内心、勾股定理、坐标类规律探索等知识;根据题意得出规律是解题的关键.15、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质16、10%.【解析】设该公司缴税的年平均增长率是x,则去年缴税40(1+x)万元,今年缴税40(1+x)(1+x)=40(1+x)2万元.据此列出方程:40(1+x)2=48.4,解得x=0.1或x=-2.1(舍去).∴该公司缴税的年平均增长率为10%.17、3π.【解析】∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为3π.18、【分析】直接分类讨论得出x的取值范围,进而解方程得出答案.【详解】解:当1x>x﹣1时,故x>﹣1,则1x=x1﹣4,故x1﹣1x﹣4=0,(x﹣1)1=5,解得:x1=1+,x1=1﹣;当1x<x﹣1时,故x<﹣1,则x﹣1=x1﹣4,故x1﹣x﹣1=0,解得:x3=1(不合题意舍去),x4=﹣1(不合题意舍去),综上所述:方程max{1x,x﹣1}=x1﹣4的解为:x1=1+,x1=1﹣.故答案为:x1=1+,x1=1﹣.【点睛】考核知识点:一元二次方程.理解规则定义是关键.三、解答题(共78分)19、(1);(2)①,②当m=3时,S有最大值,③点P的坐标为(4,6)或(,).【分析】(1)由,则-12a=6,求得a即可;(2)①过点P作x轴的垂线交AB于点D,先求出AB的表达式y=-x+6,设点,则点D(m,-m+6),然后再表示即可;②由在中,<0,故S有最大值;③△PDE为等腰直角三角形,则PE=PD,然后再确定函数的对称轴、E点的横坐标,进一步可得|PE|=2m-4,即求得m即可确定P的坐标.【详解】解:(1)由抛物线的表达式可化为,则-12a=6,解得:a=,故抛物线的表达式为:;(2)①过点P作x轴的垂线交AB于点D,由点A(0,6)、B的坐标可得直线AB的表达式为:y=-x+6,设点,则点D(m,-m+6),∴;②∵,<0∴当m=3时,S有最大值;③∵△PDE为等腰直角三角形,∴PE=PD,∵点,函数的对称轴为:x=2,则点E的横坐标为:4-m,则|PE|=2m-4,即,解得:m=4或-2或或(舍去-2和)当m=4时,=6;当m=时,=.故点P的坐标为(4,6)或(,).【点睛】本题属于二次函数综合应用题,主要考查了一次函数、等腰三角形的性质、图形的面积计算等知识点,掌握并灵活应用所学知识是解答本题的关键.20、x1=﹣1,x2=2.【分析】先把方程左边分解,原方程转化为x+1=1或x﹣2=1,然后解一次方程即可.【详解】解:∵x2﹣2x﹣2=1,∴(x+1)(x﹣2)=1,∴x+1=1或x﹣2=1,∴x1=﹣1,x2=2.【点睛】本题考查了一元二次方程的解法:配方法、公式法和因式分解法.三种方法均可解出方程的根,这里选用的是因式分解法.21、(1);(2),最小值为;(3)或或或或.【分析】(1)由抛物线的对称性可得到,然后将A、B、C坐标代入抛物线解析式,求出a、b、c的值即可得到抛物线解析式;(2)利用待定系数法求出直线BC解析式,作轴交于点,设,则,表示出PQ的长度,然后得到△PBC的面积表达式,根据二次函数最值问题求出P点坐标,再把向左移动1个单位得,连接,易得即为最小值;(3)由题意可知在直线上运动,设,则,分别讨论:①,②,③,建立方程求出m的值,即可得到的坐标.【详解】解:(1)由抛物线的对称性知,把代入解析式,得解得:抛物线的解析式为.(2)设BC直线解析式为为将代入得,,解得∴直线的解析式为.作轴交于点,如图,设,则,.当时,取得最大值,此时,.把向左移动1个单位得,连接,如图.(3)由题意可知在直线上运动,设,则,∴①当时,,解得此时或;②当时,,解得此时或③当时,,解得,此时,综上所述的坐标为或或或.【点睛】本题考查二次函数的综合问题,涉及待定系数法求函数解析式,面积最值与线段最值问题,等腰三角形存在性问题,是中考常考的压轴题,难度较大,采用数形结合与分类讨论是解题的关键.22、(1)答案见解析;(2).【解析】试题分析:(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长.试题解析:()∵四边形是平行四边形,∴,,∴,,∵,,∴,∴.()四边形是平行四边形,∴,,又∵,∴,在中,,∵,∴,∴.23、(1)x1=,x2=;(2)x=【分析】(1)将方程化为一般形式ax2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=,∴x1=,x2=;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,检验:当x=时,(x+2)(x﹣2)≠0,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年北京初三九年级上学期同步测试化学试题及答案
- 湖北省咸宁市2023-2024学年高一下学期期末考试历史试卷
- 工程水文学课程论文要求及格式
- 工程实训报告
- 2.3 地域文化与城乡景观(课件)人教版(2019)必修二地理高一下学期
- 人教部编版八年级语文上册《“飞天”凌空-跳水姑娘吕伟夺魁记 》公开示范课教学 课件
- KG316T时控开关使用说明
- 2024年阜阳从业资格证客运考试题库
- 2024年防洪施工合同
- 2024年钢化玻璃采购合同范本
- 2024-2025学年部编版(2024)七年级历史上册知识点提纲
- 2024年公路水运交通安全员C证从业资格证考试题库含答案
- 2022-2023学年北京市西城区三帆中学七年级(上)期中数学试卷【含解析】
- 2023-2024学年全国小学二年级上语文人教版期中考卷(含答案解析)
- 挖掘机检验报告.doc
- 拌合站设备安装实施方案
- 如何指导学生创作科学微电影
- 欧姆龙PLC指令集讲义
- 印刷厂技术参数一览表
- 贴坡式混凝土挡墙浇筑施工方案(完整版)
- 园林景观施工界面划分(参考模板)
评论
0/150
提交评论