2025届河南省新野县九上数学期末学业水平测试模拟试题含解析_第1页
2025届河南省新野县九上数学期末学业水平测试模拟试题含解析_第2页
2025届河南省新野县九上数学期末学业水平测试模拟试题含解析_第3页
2025届河南省新野县九上数学期末学业水平测试模拟试题含解析_第4页
2025届河南省新野县九上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省新野县九上数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,m)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<22.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2α B.2α C.90°+α D.90°﹣α3.如图是某个几何体的三视图,则该几何体是(

)A.长方体 B.圆锥 C.圆柱 D.三棱柱4.如图是一个几何体的三视图,这个几何体是().A.三棱锥 B.三棱柱 C.长方体 D.圆柱体5.如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是()A.10πm B.20πm C.10πm D.60m6.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣17.如图所示,已知为的直径,直线为圆的一条切线,在圆周上有一点,且使得,连接,则的大小为()A. B. C. D.8.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.9.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.10.如果用配方法解方程x2-2x-3=0,那么原方程应变形为(A.(x-1)2=4 B.(x+1)2=4二、填空题(每小题3分,共24分)11.已知点A(a,1)与点B(﹣3,b)关于原点对称,则ab的值为_____.12.如图,在平面直角坐标系中,点在抛物线上运动,过点作轴于点,以为对角线作矩形连结则对角线的最小值为.13.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,图像从左至右呈下降趋势.其中正确的结论是_______________(只填序号).14.如图,AB是半圆O的直径,D是半圆O上一点,C是的中点,连结AC交BD于点E,连结AD,若BE=4DE,CE=6,则AB的长为_____.15.已知二次函数y=-x-2x+3的图象上有两点A(-7,),B(-8,),则▲.(用>、<、=填空).16.如图,一次函数与反比例函数的图象分别是直线和双曲线.直线与双曲线的一个交点为点轴于点,则此反比例函数的解析式为_______________.17.从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t﹣5t2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.18.如图,点、在上,点在轴的正半轴上,点是上第一象限内的一点,若,则圆心的坐标为__.三、解答题(共66分)19.(10分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.20.(6分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价(元/件)的关系如下表:15202530550500450400设这种产品在这段时间内的销售利润为(元),解答下列问题:(1)如是的一次函数,求与的函数关系式;(2)求销售利润与销售单价之间的函数关系式;(3)求当为何值时,的值最大?最大是多少?21.(6分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.(1)当售价为万元/辆时,平均每周的销售利润为___________万元;(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.22.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.23.(8分)“红灯停,绿灯行”是我们过路口遇见交通信号灯时必须遵守的规则.小明每天从家骑自行车上学要经过三个路口,假如每个路口交通信号灯中红灯和绿灯亮的时间相同,且每个路口的交通信号灯只安装了红灯和绿灯.那么某天小明从家骑车去学校上学,经过三个路口抬头看到交通信号灯.(1)请画树状图,列举小明看到交通信号灯可能出现的所有情况;(2)求小明途经三个路口都遇到红灯的概率.24.(8分)解不等式组,并求出它的整数解25.(10分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元.市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).设这种布鞋每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?26.(10分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.

参考答案一、选择题(每小题3分,共30分)1、C【分析】一次函数y1=kx+b落在与反比例函数y1=图像上方的部分对应的自变量的取值范围即为不等式的解集.【详解】解:∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y1=(c是常数,且c≠0)的图象相交于A(﹣3,﹣1),B(1,m)两点,∴不等式y1>y1的解集是﹣3<x<0或x>1.故答案为C.【点睛】本题考查了一次函数、反比例函数图像与不等式的关系,从函数图像确定不等式的解集是解答本题的关键.2、D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.3、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.4、B【解析】试题解析:根据三视图的知识,主视图为三角形,左视图为一个矩形,俯视图为两个矩形,故这个几何体为三棱柱.故选B.5、B【分析】连接OA,OB,OC,根据切线的性质得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等边三角形,得到OA=AB=60,根据弧长的计算公式即可得到结论.【详解】解:连接OA,OB,OC,∵AC与BC是⊙O的切线,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等边三角形,∴OA=AB=60,∴公路AB的长度==20πm,故选:B.【点睛】本题主要考察切线的性质及弧长,解题关键是连接OA,OB,OC推出△AOB是等边三角形.6、D【解析】∵在每个象限内的函数值y随x的增大而增大,∴m+1<0,∴m<-1.7、C【分析】连接OB,由题意可知,△COB是等边三角形,即可求得∠C,再由三角形内角和求得∠BAC,最后根据切线的性质和余角的定义解答即可.【详解】解:如图:连接OB∵为的直径∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等边三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直线为圆的一条切线∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案为C.【点睛】本题主要考查了圆的性质、等边三角形以及切线的性质等知识点,根据题意说明△COB是等边三角形是解答本题的关键.8、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.9、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10、A【解析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【详解】解:移项得,x2−2x=3,配方得,x2−2x+1=4,即(x−1)2=4,故选:A.【点睛】本题考查了用配方法解一元二次方程,掌握配方法的步骤是解题的关键.二、填空题(每小题3分,共24分)11、-2【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数,可得a、b的值,根据有理数的乘法,可得答案.【详解】解:由点A(a,1)与点B(-2,b)关于原点对称,得

a=2,b=-1.

ab=(2)×(-1)=-2,

故答案为-2.【点睛】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律是:横、纵坐标都是互为相反数.12、1【分析】先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.【详解】∵y=x2-2x+2=(x-1)2+1,

∴抛物线的顶点坐标为(1,1),

∵四边形ABCD为矩形,

∴BD=AC,

而AC⊥x轴,

∴AC的长等于点A的纵坐标,

当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,

∴对角线BD的最小值为1.

故答案为1.13、①③④【分析】根据二次函数的性质对各小题分析判断即可得解.【详解】解:在抛物线中,∵,∴抛物线的开口向下;①正确;∴对称轴为直线;②错误;∴顶点坐标为;③正确;∴时,图像从左至右呈下降趋势;④正确;∴正确的结论有:①③④;故答案为:①③④.【点睛】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.14、4【分析】如图,连接OC交BD于K.设DE=k.BE=4k,则DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EK•EB,求出k即可解决问题.【详解】解:如图,连接OC交BD于K.∵,∴OC⊥BD,∵BE=4DE,∴可以假设DE=k.BE=4k,则DK=BK=2.5k,EK=1.5k,∵AB是直径,∴∠ADK=∠DKC=∠ACB=90°,∴AD∥CK,∴AE:EC=DE:EK,∴AE:6=k:1.5k,∴AE=4,∵△ECK∽△EBC,∴EC2=EK•EB,∴36=1.5k×4k,∵k>0,∴k=,∴BC===2,∴AB===4.故答案为:4.【点睛】本题考查相似三角形的判定和性质,垂径定理,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.15、>.【解析】根据已知条件求出二次函数的对称轴和开口方向,再根据点A、B的横坐标的大小即可判断出y1与y1的大小关系:∵二次函数y=﹣x1﹣1x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大.∵点A(﹣7,y1),B(﹣8,y1)是二次函数y=﹣x1﹣1x+3的图象上的两点,且﹣7>﹣8,∴y1>y1.16、【分析】根据题意易得点A、B、D的坐标,再利用待定系数法求出直线AB的解析式,进而可得点C坐标,然后根据待定系数法即可求得结果.【详解】解:由已知,得,设一次函数解析式为,因为点A、B在一次函数图象上,,解得:,则一次函数解析式是,因为点在一次函数图象上,所以当时,,即,设反比例函数解析式为,∵点在反比例函数图象上,则,所以,∴反比例函数解析式是.故答案为:.【点睛】本题考查了待定系数法求一次函数和反比例函数的解析式以及函数图象上点的坐标特征,属于基础题型,熟练掌握待定系数法求解的方法是解题的关键.17、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.18、【分析】分别过点B,C作x轴的垂线,垂足分别为E,F,先通过圆周角定理可得出∠BAC=90°,再证明△BEA≌△AFC,得出AE=CF=4,再根据AO=AE-OE可得出结果.【详解】解:分别过点B,C作x轴的垂线,垂足分别为E,F,∵∠D=45°,∴∠BAC=90°.∴∠BAE+∠ABE=90°,∠BAE+∠CAF=90°,∴∠ABE=∠CAF,又AB=AC,∠AEB=∠AFC=90°,∴△BEA≌△AFC(AAS),∴AE=CF,又∵B,C的坐标为、,∴OE=1,CF=4,∴OA=AE-OE=CF-OE=1.∴点A的坐标为(1,0).故答案为:(1,0).【点睛】本题主要考查圆周角定理,以及全等三角形的判定与性质,根据已知条件作辅助线构造出全等三角形是解题的关键.三、解答题(共66分)19、(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1);(2);(3)当时,的值最大,最大值为9000元【分析】(1)根据待定系数法即可求出一次函数解析式;(2)根据题意列出二次函数即可求解;(3)根据二次函数的性质即可得到最大值.【详解】(1)设与的函数关系式为y=kx+b把(15,550)、(20,500)代入得解得∴(2)∵成本为10元,故每件利润为(x-10)∴销售利润(3)=∵-10<0,∴当时,的值最大,最大值为9000元.【点睛】本题主要考查二次函数的应用,理解题意抓住相等关系函数解析式是解题的关键.21、(1)(2)万元【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.【详解】(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22−15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25−x−15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25−5=20(万元),答:每辆汽车的售价为20万元.【点睛】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.22、(1)证明见解析;(2).【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,,又易证△EAF∽△CAG,所以,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=考点:相似三角形的判定23、(1)详见解析;共有8种等可能的结果;(2)【分析】此题分三步完成,每一个路口需要选择一次,所以把每个路口看做一步,用树状图表示所有情况,再利用概率公式求解.【详解】(1)列树状图如下:由树状图可以看出,共有8种等可能的结果,即:红红红、红红绿、红绿红、红绿绿、绿红红、绿红绿、绿绿红、绿绿绿、(2)由(1)可知(三次红灯).【点睛】此题考查的是用树状图法求概率.树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24、不等式组的解集为﹣1<x<2,不等式组的整数解为0、1.【分析】先分别求出两个一元一次不等式的解,再根据求不等式组解的方法求出不等式组的解,继而可求出其整数解.【详解】解:解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,则不等式组的解集为﹣1<x<2,所以不等式组的整数解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论