版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考一轮复习讲与练09指数与指数函数练高考明方向1、【2022高考全国甲卷文科】7函数在区间的图象大致为()A.B.C.D.2、(2023年高考全国甲卷理科)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2 C.0.8 D.0.63.(2023年高考数学课标Ⅱ卷理科)若,则 ()A. B. C. D.4.(2023年高考数学课标Ⅲ卷理科)函数在的图像大致为 ()A. B.C. D.5.(2023年高考数学课标Ⅱ卷(理))函数的图象大致为 ()6.(2023年高考数学课标Ⅲ卷理科)已知函数有唯一零点,则 ()A. B. C. D.7.(2023北京)已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数8.(2023新课标Ⅲ)设函数,则满足的的取值范围是___.9.(2023高考数学课标Ⅲ卷理科)已知,,,则 ()A. B. C. D.10.(2023年高考数学课标Ⅲ卷理科)设函数,则满足的的取值范围是.11.(2023江西)已知函数,,若,则()A.1B.2C.3D.-112.(2023重庆)下列函数为偶函数的是()A.B.C.D.13.(2023年陕西)已知函数=,若=4,则实数=A.B.C.2D.914.(2023广东)若函数与的定义域均为,则A.与均为偶函数B.为偶函数,为奇函数C.与均为奇函数D.为奇函数,为偶函数15.(2023天津)已知f(x)是定义在R上的偶函数,且在区间上单调递增.若实数a满足,则a的取值范围是______.16.(2023山东)已知函数的定义域和值域都是,则.17.(2023江苏)设函数(R)是偶函数,则实数a=______.指数与指数函数根式的概念指数与指数函数根式的概念有理数指数幂指数函数的定义指数函数的图象指数函数的性质类型一、根式基础知识:(1)根式的概念如果xn=a,则x叫做a的n次方根,其中n>1,且n∈N*.式子eq\r(n,a)叫做根式,这里n叫做根指数,a叫做被开方数.(2)a的n次方根的表示:xn=a⇒eq\b\lc\{\rc\(\a\vs4\al\co1(x=\r(n,a)当n为奇数且n>1时,,x=±\r(n,a)当n为偶数且n>1时.))基本题型:1.(根式与分数指数幂的互化)根式的分数指数幂的形式为()A.B. C. D.2.(根式的运算)已知,则的值是()A. B.C. D.3.(根式的运算)已知m=2,n=3,则[÷]3的值是______.类型二、指数幂的运算基础知识:有理数指数幂幂的有关概念正分数指数幂:a=eq\r(n,am)(a>0,m,n∈N*,且n>1)负分数指数幂:a=eq\f(1,a)=eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1)0的正分数指数幂等于_0_,0的负分数指数幂没有意义有理数指数幂的性质aras=ar+s(a>0,r,s∈Q)(ar)s=ars(a>0,r,s∈Q)(ab)r=arbr(a>0,b>0,r∈Q)基本题型:1.(指数幂的运算)设,则下列运算中正确的是()A. B. C. D.2.(指数幂的运算)已知,则____________3.(指数幂的运算)化简下列各式:(1);(2).基本方法:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.类型三、指数函数的图象基础知识:1、指数函数的图象y=axa>10<a<1图象2、注意事项:(1)当指数函数的底数a的大小不确定时,需分a>1和0<a<1两种情况进行讨论.(2)指数函数的图象恒过点(0,1),(1,a),eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(1,a))),依据这三点的坐标可得到指数函数的大致图象.(3)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(4)指数函数在同一平面直角坐标系中的图象的相对位置与底数的大小关系如图所示,其中0<c<d<1<a<b.基本题型:1.(根据解析式确定图象)函数y=ax-a-1(a>0,且a≠1)的图象可能是()2.(根据解析式确定图象)函数(且)的图象不可能是()A.B.C.D.3、(根据图象确定解析式)已知函数的图象如图所示,则的解析式最有可能是()A.B. C. D.4.(利用图象求参数范围)若函数,(,且)的图像经过第一,第三和第四象限,则一定有()A.且 B.且C.且 D.且5.(利用图象求参数范围)若函数y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|1-x|+m的图象与x轴有公共点,则m的取值范围是()A.(-∞,-1] B.[-1,0)C.[1,+∞) D.(0,1]6.(利用图象比较大小)(多选)设实数a,b,c满足ea=lnb=1-c,则下列不等式可能成立的有()A.a<b<c B.a<c<bC.c<a<b D.c<b<a基本方法:有关指数函数图象问题的解题思路:(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解.(4)根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.类型四、指数函数的性质基础知识:y=axa>10<a<1图象性质函数的定义域为eq\a\vs4\al(R);值域为(0,+∞)函数图象过定点(0,1),即当x=eq\a\vs4\al(0)时,y=eq\a\vs4\al(1)当x>0时,恒有y>1;当x<0时,恒有0<y<1当x>0时,恒有0<y<1;当x<0时,恒有y>1在R上为增函数在R上为减函数基本题型:1.(与指数函数有关的定义域问题)函数的定义域是()A. B. C. D.2.(与指数函数有关的值域问题)函数的值域为()A. B. C. D.3.(与指数函数有关的分段函数)若函数单调递增,则实数a的取值范围是()A. B. C. D.4.(与指数函数有关的单调性问题)若f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]5.(与指数函数有关的奇偶性、单调性问题)已知为偶函数,为奇函数,且满足.若存在,使得不等式有解,则实数的最大值为()A. B. C.1 D.-16.(与指数函数有关的单调性、对称性问题)已知函数,则()A.在单调递增 B.在单调递减C.的图像关于直线对称 D.的图像关于y轴对称7、(利用单调性比较大小)设a=30.8,b=π0.8,c=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))e,则a,b,c的大小关系为()A.c<a<b B.a<b<cC.c<b<a D.b<a<c9、(利用单调性比较大小)已知a=0.30.6,b=0.30.5,c=0.40.5,则()A.a>b>c B.a>c>bC.b>c>a D.c>b>a10.(利用单调性解指数不等式)已知函数,则不等式的解集是()A. B. C. D.基本方法:1.比较幂值大小的方法在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象与性质是解题的关键.2、比较指数幂大小的常用方法单调性法:不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底取中间值法:不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,然后得出大小关系图象法:根据指数函数的特征,在同一平面直角坐标系中作出它们的函数图象,借助图象比较大小3、解指数不等式的常用方法性质法:解形如ax>ab的不等式,可借助函数y=ax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论隐含性质法:解形如ax>b的不等式,可先将b转化为以a为底数的指数幂的形式,再借助函数y=ax的单调性求解图象法:解形如ax>bx的不等式,可利用对应的函数图象求解类型五、指数函数与二次函数基本题型:1.已知函数,则该函数的单调递增区间是__________.2、若函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))有最大值3,则a=________.3.已知是定义在R上的奇函数,且当时,,则此函数的值域为__________.4.已知在区间上的值域为。(1)求实数的值;(2)若不等式当上恒成立,求实数k的取值范围。基本方法:求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.求参数值(范围)的方法是:首先判断指数型函数的性质,再利用其性质求解.新预测破高考1.下列命题中正确的个数为()①,②,则,③,④A.0 B.1 C.2 D.32.函数f(x)=1-e|x|的图象大致是()3.如果,那么()A. B.C. D.4.()A. B.1-C.3-3 D.3-35.已知,那么等于()A. B. C. D.6.(多选)对函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))判断正确的是()A.增区间为(0,+∞) B.增区间为(-∞,0)C.值域为eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2),+∞)) D.值域为eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)))7.若,则等于A. B.C. D.8、若不等式x2-2ax+a>0对x∈R恒成立,则关于t的不等式a2t+1<at2+2t-3<1的解为()A.1<t<2 B.-2<t<1C.-2<t<2 D.-3<t<29.已知实数a,b满足eq\f(1,2)>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))a>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b>eq\f(1,4),则()A.b<2eq\r(b-a) B.b>2eq\r(b-a)C.a<eq\r(b-a) D.a>eq\r(b-a)10.(多选)已知函数f(x)=eq\f(2x-1,2x+1),下面说法正确的有()A.f(x)的图象关于原点对称B.f(x)的图象关于y轴对称C.f(x)的值域为(-1,1)D.∀x1,x2∈R,且x1≠x2,eq\f(fx1-fx2,x1-x2)<011、函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<012、已知实数a,b满足等式,给出下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中,不可能成立的有()A.1个 B.2个 C.3个 D.4个13、若0<a<b<1,x=ab,y=ba,z=bb,则x,y,z的大小关系为()A.x<z<y B.y<x<zC.y<z<x D.z<y<x14.当x∈(-∞,-1]时,不等式(m2-2m)4-x-2-x+3<0恒成立,则实数m的取值范围是()A.[0,2] B.(1-eq\r(5),1+eq\r(5))C.[1-eq\r(5),1+eq\r(5)] D.[-2,4]15.若函数f(x)为定义在R上的偶函数,当x≥0时,f(x)=2x-2,则不等式f(x-1)≥2f(x)的解集为()A.(-∞,0] B.eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,log2\f(1+\r(5),2)))C.eq\b\lc\[\rc\](\a\vs4\al\co1(0,log2\f(1+\r(5),2))) D.[0,1)16、(多选)已知实数a,b满足等式3a=2b,则下列不等式可能成立的是()A.0<a<b B.0<b<aC.a<b<0 D.b<a<017.(多选)已知f(x)是定义在R上的奇函数,f(x)的图象关于x=1对称,当x∈(0,1]时,f(x)=ex-1,则下列判断正确的是()A.f(x)的周期为4 B.f(x)的值域为[-1,1]C.f(x+1)是偶函数 D.f(2021)=118.函数y=|3x-2|+m的图象不经过第二象限,则实数m的取值范围是________.19.已知,则__________.20.已知函数在区间上的值域为,则实数的取值范围为__________.21.请解决下列问题:(1)若,求的值;(2)已知,求的值.22.已知函数,.(1)当时,求的值域;(2)若的最大值为,求实数的值.23.已知(1)求函数的定义域;(2)判断的奇偶性;并说明理由;(3)证明
2023高考一轮复习讲与练09指数与指数函数练高考明方向1、【2022高考全国甲卷文科】7函数在区间的图象大致为()A.B.C.D.答案:A分析:由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,,所以,排除C.2、(2023年高考全国甲卷理科)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2 C.0.8 D.0.6答案:C解析:由,当时,,则.3.(2023年高考数学课标Ⅱ卷理科)若,则 ()A. B. C. D.答案:A解析:由得:,令,为上的增函数,为上的减函数,为上的增函数,,,,,则A正确,B错误;与的大小不确定,故CD无法确定.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到的大小关系,考查了转化与化归的数学思想4.(2023年高考数学课标Ⅲ卷理科)函数在的图像大致为 ()A. B.C. D.答案:B【解析】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又,排除选项A、D,故选B.【点评】本题通过判断函数的奇偶性,缩小选项范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.在解决图象类问题时,我们时常关注的是对称性、奇偶性,特殊值,求导判断函数单调性,极限思想等方法。5.(2023年高考数学课标Ⅱ卷(理))函数的图象大致为 ()答案:B解析:因为,,所以为奇函数,排除A;,排除D;因为,当时,,函数单调递增,排除C.故选B.6.(2023年高考数学课标Ⅲ卷理科)已知函数有唯一零点,则 ()A. B. C. D.答案:C【解析】法一:,设,,当时,,当时,,函数单调递减;当时,,函数单调递增,当时,函数取得最小值,设,当时,函数取得最小值,若,函数和没有交点,当时,时,函数和有一个交点,即,所以.法二:由条件,,得:,所以,即为的对称轴,由题意,有唯一零点,∴的零点只能为,即,解得.【考点】函数的零点;导函数研究函数的单调性,分类讨论的数学思想【点评】函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.(2023北京)已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数答案:A【解析】,得为奇函数,,所以在R上是增函数.选A.8.(2023新课标Ⅲ)设函数,则满足的的取值范围是___.答案:【解析】当时,不等式为恒成立;当,不等式恒成立;当时,不等式为,解得,即;综上,的取值范围为.
9.(2023高考数学课标Ⅲ卷理科)已知,,,则 ()A. B. C. D.答案:A【解析】因为,,故选A.10.(2023年高考数学课标Ⅲ卷理科)设函数,则满足的的取值范围是.答案:【解析】法一:因为当时,;当时,;当时,由,可解得综上可知满足的的取值范围是.法二:,,即由图象变换可画出与的图象如下:由图可知,满足的解为.法三:当且时,由得,得,又因为是上的增函数,所以当增大时,增大,所以满足的的取值范围是.【点评】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.11.(2023江西)已知函数,,若,则()A.1B.2C.3D.-1答案:A【解析】因为,且,所以,即,解得.12.(2023重庆)下列函数为偶函数的是()A.B.C.D.答案:D【解析】函数和既不是偶函数也不是奇函数,排除选项A和选项B;选项C中,则,所以=为奇函数,排除选项C;选项D中,则,所以为偶函数.13.(2023年陕西)已知函数=,若=4,则实数=A.B.C.2D.9答案:C【解析】∵,∴.于是,由得.故选.14.(2023广东)若函数与的定义域均为,则A.与均为偶函数B.为偶函数,为奇函数C.与均为奇函数D.为奇函数,为偶函数答案:B【解析】.15.(2023天津)已知f(x)是定义在R上的偶函数,且在区间上单调递增.若实数a满足,则a的取值范围是______.答案:【解析】由是偶函数可知,单调递增;单调递减,又,,可得,即.16.(2023山东)已知函数的定义域和值域都是,则.答案:【解析】当时,无解;当时,解得,,则.17.(2023江苏)设函数(R)是偶函数,则实数a=______.答案:-1【解析】设,∵为奇函数,由题意也为奇函数.所以,解得.指数与指数函数根式的概念指数与指数函数根式的概念有理数指数幂指数函数的定义指数函数的图象指数函数的性质类型一、根式基础知识:(1)根式的概念如果xn=a,则x叫做a的n次方根,其中n>1,且n∈N*.式子eq\r(n,a)叫做根式,这里n叫做根指数,a叫做被开方数.(2)a的n次方根的表示:xn=a⇒eq\b\lc\{\rc\(\a\vs4\al\co1(x=\r(n,a)当n为奇数且n>1时,,x=±\r(n,a)当n为偶数且n>1时.))基本题型:1.(根式与分数指数幂的互化)根式的分数指数幂的形式为()A.B. C. D.答案:D【解析】.2.(根式的运算)已知,则的值是()A. B.C. D.答案:B【解析】由题意知,,由于,故,则原式.3.(根式的运算)已知m=2,n=3,则[÷]3的值是______.答案:【解析】m=2,n=3,则原式==m•n-3=2×3-3=,类型二、指数幂的运算基础知识:有理数指数幂幂的有关概念正分数指数幂:a=eq\r(n,am)(a>0,m,n∈N*,且n>1)负分数指数幂:a=eq\f(1,a)=eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1)0的正分数指数幂等于_0_,0的负分数指数幂没有意义有理数指数幂的性质aras=ar+s(a>0,r,s∈Q)(ar)s=ars(a>0,r,s∈Q)(ab)r=arbr(a>0,b>0,r∈Q)基本题型:1.(指数幂的运算)设,则下列运算中正确的是()A. B. C. D.答案:D【解析】由题,,所以A错;,所以B错;,所以C错;,所以D正确.2.(指数幂的运算)已知,则____________答案:110【解析】3.(指数幂的运算)化简下列各式:(1);(2).答案:(1);(2).【解析】(1)原式;(2)原式.基本方法:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序.(2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.类型三、指数函数的图象基础知识:1、指数函数的图象y=axa>10<a<1图象2、注意事项:(1)当指数函数的底数a的大小不确定时,需分a>1和0<a<1两种情况进行讨论.(2)指数函数的图象恒过点(0,1),(1,a),eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(1,a))),依据这三点的坐标可得到指数函数的大致图象.(3)任意两个指数函数的图象都是相交的,过定点(0,1),底数互为倒数的两个指数函数的图象关于y轴对称.(4)指数函数在同一平面直角坐标系中的图象的相对位置与底数的大小关系如图所示,其中0<c<d<1<a<b.基本题型:1.(根据解析式确定图象)函数y=ax-a-1(a>0,且a≠1)的图象可能是()答案:D【解析】y=ax-eq\f(1,a)是由函数y=ax的图象向下平移eq\f(1,a)个单位长度得到的,A项显然错误;当a>1时,0<eq\f(1,a)<1,平移距离小于1,所以B项错误;当0<a<1时,eq\f(1,a)>1,平移距离大于1,所以C项错误.故选D.2.(根据解析式确定图象)函数(且)的图象不可能是()A.B.C.D.答案:D【解析】当时,为减函数,取时,函数值,又,所以故C选项符合题意,D选项不符合题意;当时,函数为增函数,取时,函数值,又,所以,故A选项符合题意,B选项也符合题意.故选:D.3、(根据图象确定解析式)已知函数的图象如图所示,则的解析式最有可能是()A.B. C. D.答案:A【解析】选项B、D的函数定义域为,和图象不匹配,错误;选项C函数为减函数,和图象不匹配,错误;选项A函数的定义域为R,且为增函数,正确.4.(利用图象求参数范围)若函数,(,且)的图像经过第一,第三和第四象限,则一定有()A.且 B.且C.且 D.且答案:B【解析】根据指数函数的图象和性质可知,要使函数y=ax﹣(b+1)(a>0且a≠1)的图象经过第一、三、四象限,则函数为增函数,∴a>1,且f(0)<0,即f(0)=1﹣b<0,解得b>1.5.(利用图象求参数范围)若函数y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|1-x|+m的图象与x轴有公共点,则m的取值范围是()A.(-∞,-1] B.[-1,0)C.[1,+∞) D.(0,1]答案:B【解析】y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|1-x|+m与x轴有公共点,即y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|1-x|与y=-m有公共点,y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))|1-x|的图象如图.由图可知0<-m≤1⇒-1≤m<0.6.(利用图象比较大小)(多选)设实数a,b,c满足ea=lnb=1-c,则下列不等式可能成立的有()A.a<b<c B.a<c<bC.c<a<b D.c<b<a答案:BC【解析】如图,画出函数y=ex,y=lnx,y=1-x的图象,当ea=lnb=1-c=k∈(0,1)时,根据图象可知a<c<b;当ea=lnb=1-c=k>1时,c<a<b.基本方法:有关指数函数图象问题的解题思路:(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解.(4)根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.类型四、指数函数的性质基础知识:y=axa>10<a<1图象性质函数的定义域为eq\a\vs4\al(R);值域为(0,+∞)函数图象过定点(0,1),即当x=eq\a\vs4\al(0)时,y=eq\a\vs4\al(1)当x>0时,恒有y>1;当x<0时,恒有0<y<1当x>0时,恒有0<y<1;当x<0时,恒有y>1在R上为增函数在R上为减函数基本题型:1.(与指数函数有关的定义域问题)函数的定义域是()A. B. C. D.答案:B【解析】要使函数有意义,需满足,即:,因为为增函数,所以,解得:.2.(与指数函数有关的值域问题)函数的值域为()A. B. C. D.答案:D【解析】由二次函数的性质可知,因此,即函数的值域为.3.(与指数函数有关的分段函数)若函数单调递增,则实数a的取值范围是()A. B. C. D.答案:B【解析】函数单调递增,解得所以实数的取值范围是.4.(与指数函数有关的单调性问题)若f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]答案:B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.(与指数函数有关的奇偶性、单调性问题)已知为偶函数,为奇函数,且满足.若存在,使得不等式有解,则实数的最大值为()A. B. C.1 D.-1答案:A【解析】为偶函数,为奇函数,且①,②①②两式联立可得,.由得,∵在为增函数,∴,故选:A.6.(与指数函数有关的单调性、对称性问题)已知函数,则()A.在单调递增 B.在单调递减C.的图像关于直线对称 D.的图像关于y轴对称答案:C【解析】,根据对勾函数的图像特征,在单调递减,在单调递增,在上单调递增,根据复合函数的单调性可得,当,即,函数单调递减,当,即,函数单调递增,所以选项A,B错误;由,的图像关于直线对称,选项C正确;由,的图像不关于y轴对称,选项D,错误.故选C7、(利用单调性比较大小)设a=30.8,b=π0.8,c=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))e,则a,b,c的大小关系为()A.c<a<b B.a<b<cC.c<b<a D.b<a<c答案:A【解析】幂函数y=x0.8在(0,+∞)上单调递增,又π>3>1,则有π0.8>30.8>10.8=1,指数函数y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))x在R上单调递减,而e>0,于是得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))e<eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))0=1,从而有eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))e<1<30.8<π0.8,所以c<a<b.9、(利用单调性比较大小)已知a=0.30.6,b=0.30.5,c=0.40.5,则()A.a>b>c B.a>c>bC.b>c>a D.c>b>a答案:D【解析】根据函数y=0.3x单调递减知:a=0.30.6<b=0.30.5;根据函数y=x0.5单调递增知:b=0.30.5<c=0.40.5,故c>b>a.10.(利用单调性解指数不等式)已知函数,则不等式的解集是()A. B. C. D.答案:A【解析】函数的定义域为,关于原点对称,且,该函数为偶函数,当时,,该函数在区间上为增函数,由,得,,即,得,可得,解得.因此,不等式的解集是.基本方法:1.比较幂值大小的方法在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,既不同底又不同次数的幂函数值比较大小:常找到一个中间值,通过比较幂函数值与中间值的大小进行判断.准确掌握各个幂函数的图象与性质是解题的关键.2、比较指数幂大小的常用方法单调性法:不同底的指数函数化同底后就可以应用指数函数的单调性比较大小,所以能够化同底的尽可能化同底取中间值法:不同底、不同指数的指数函数比较大小时,先与中间值(特别是0,1)比较大小,然后得出大小关系图象法:根据指数函数的特征,在同一平面直角坐标系中作出它们的函数图象,借助图象比较大小3、解指数不等式的常用方法性质法:解形如ax>ab的不等式,可借助函数y=ax的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论隐含性质法:解形如ax>b的不等式,可先将b转化为以a为底数的指数幂的形式,再借助函数y=ax的单调性求解图象法:解形如ax>bx的不等式,可利用对应的函数图象求解类型五、指数函数与二次函数基本题型:1.已知函数,则该函数的单调递增区间是__________.答案:【解析】由题得函数的定义域为.设,函数在单调递减,在单调递增,函数在其定义域内单调递减,所以在单调递增,在单调递减.2、若函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))有最大值3,则a=________.答案:1【解析】令h(x)=ax2-4x+3,y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))h(x),由于f(x)有最大值3,所以h(x)应有最小值-1,因此必有eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,\f(12a-16,4a)=-1,))解得a=1,即当f(x)有最大值3时,a的值为1.3.已知是定义在R上的奇函数,且当时,,则此函数的值域为__________.答案:【解析】设,当时,,所以,,所以,故当时,.因为是定义在上的奇函数,所以当时,,故函数的值域是.4.已知在区间上的值域为。(1)求实数的值;(2)若不等式当上恒成立,求实数k的取值范围。答案:(1);(2).【解析】(1),当时,在上单调递增,即,与矛盾。故舍去。当时,,即,故,此时,满足时其函数值域为。当时,在上单调递减,,即,舍去。综上所述:。(2)由已知得在上恒成立在上恒成立令,且,则上式恒成立。记,时单调递减,,故,所以的取值范围为。基本方法:求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.求参数值(范围)的方法是:首先判断指数型函数的性质,再利用其性质求解.新预测破高考1.下列命题中正确的个数为()①,②,则,③,④A.0 B.1 C.2 D.3答案:B【解析】①当为偶数时,,①错误;②当时,,则,②正确;③,③错误;④,④错误。2.函数f(x)=1-e|x|的图象大致是()答案:A【解析】由f(x)=1-e|x|是偶函数,其图象关于y轴对称,排除B、D.又e|x|≥1,所以f(x)的值域为(-∞,0],排除C.3.如果,那么()A. B.C. D.答案:C【解析】根据函数在是减函数,且,所以,所以,故选C.4.()A. B.1-C.3-3 D.3-3答案:A【解析】由于,,,故原式.5.已知,那么等于()A. B. C. D.答案:C【解析】当时,,,此时;当时,,,此时.,因此,.6.(多选)对函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))判断正确的是()A.增区间为(0,+∞) B.增区间为(-∞,0)C.值域为eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(1,2),+∞)) D.值域为eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2)))答案:BD【解析】根据指数函数性质,y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x在(-∞,+∞)上单调递减,而y=x2+1在(-∞,0)上单调递减,在[0,+∞)上单调递增,故f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))的单调递增区间为(-∞,0);y=x2+1的值域为[1,+∞),而y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x在[1,+∞)上单调递减,故f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))的值域为eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(1,2))).故选B、D.7.若,则等于A. B.C. D.答案:A【解析】原式,故选A.8、若不等式x2-2ax+a>0对x∈R恒成立,则关于t的不等式a2t+1<at2+2t-3<1的解为()A.1<t<2 B.-2<t<1C.-2<t<2 D.-3<t<2答案:A【解析】∵不等式x2-2ax+a>0对x∈R恒成立,∴Δ=4a2-4a<0⇔0<a<1,那么关于t的不等式a2t+1<at2+2t-3<1等价于:2t+1>t2+2t-3>0,即eq\b\lc\{\rc\(\a\vs4\al\co1(t2<4,,t2+2t-3>0,))解得1<t<2,故选A.9.已知实数a,b满足eq\f(1,2)>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))a>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b>eq\f(1,4),则()A.b<2eq\r(b-a) B.b>2eq\r(b-a)C.a<eq\r(b-a) D.a>eq\r(b-a)答案:B【解析】由eq\f(1,2)>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))a,得a>1,由eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))a>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b,得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))2a>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b,故2a<b,由eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b>eq\f(1,4),得eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))b>eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)))4,得b<4.由2a<b,得b>2a>2,a<eq\f(b,2)<2,故1<a<2,2<b<4.对于选项A、B,由于b2-4(b-a)=(b-2)2+4(a-1)>0恒成立,故A错误,B正确;对于选项C,D,a2-(b-a)=eq\b\lc\(\rc\)(\a\vs4\al\co1(a+\f(1,2)))2-eq\b\lc\(\rc\)(\a\vs4\al\co1(b+\f(1,4))),由于1<a<2,2<b<4,故该式的符号不确定,故C、D错误.故选B.10.(多选)已知函数f(x)=eq\f(2x-1,2x+1),下面说法正确的有()A.f(x)的图象关于原点对称B.f(x)的图象关于y轴对称C.f(x)的值域为(-1,1)D.∀x1,x2∈R,且x1≠x2,eq\f(fx1-fx2,x1-x2)<0答案:AC【解析】对于选项A,f(x)=eq\f(2x-1,2x+1),定义域为R,则f(-x)=eq\f(2-x-1,2-x+1)=eq\f(1-2x,1+2x)=-f(x),则f(x)是奇函数,图象关于原点对称,故A正确;对于选项B,计算f(1)=eq\f(2-1,2+1)=eq\f(1,3),f(-1)=eq\f(\f(1,2)-1,\f(1,2)+1)=-eq\f(1,3)≠f(1),故f(x)的图象不关于y轴对称,故B错误;对于选项C,f(x)=eq\f(2x-1,2x+1)=1-eq\f(2,1+2x),令1+2x=t,t∈(1,+∞),则f(x)=g(t)=1-eq\f(2,t),易知1-eq\f(2,t)∈(-1,1),故f(x)的值域为(-1,1),故C正确;对于选项D,易知函数t=1+2x在R上单调递增,且y=1-eq\f(2,t)在t∈(1,+∞)上单调递增,根据复合函数的单调性,可知f(x)=1-eq\f(2,1+2x)在R上单调递增,故∀x1,x2∈R,且x1≠x2,eq\f(fx1-fx2,x1-x2)>0,故D错误.故选A、C.11、函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D【解析】由f(x)=ax-b的图象可以观察出,函数f(x)=ax-b在定义域上单调递减,所以0<a<1.又f(0)=a-b<a0,所以-b>0,即b<0.12、已知实数a,b满足等式,给出下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中,不可能成立的有()A.1个 B.2个 C.3个 D.4个答案:B【解析】作y=与y=的图象.当a=b=0时,;当a<b<0时,可以使;当a>b>0时,也可以故①②⑤都可能成立,不可能成立的关系式是③④.故选B.13、若0<a<b<1,x=ab,y=ba,z=bb,则x,y,z的大小关系为()A.x<z<y B.y<x<zC.y<z<x D.z<y<x答案:A【解析】因为0<a<b<1,所以f(x)=bx单调递减,故y=ba>z=bb;又幂函数g(x)=xb单调递增,故x=ab<z=bb,则x,y,z的大小关系为:x<z<y.14.当x∈(-∞,-1]时,不等式(m2-2m)4-x-2-x+3<0恒成立,则实数m的取值范围是()A.[0,2] B.(1-eq\r(5),1+eq\r(5))C.[1-eq\r(5),1+eq\r(5)] D.[-2,4]答案:A【解析】由(m2-2m)4-x-2-x+3<0,即eq\f(m2-2m,4x)<eq\f(8,2x),等式两边同乘4x得:m2-2m<8·2x,∵函数y=2x在(-∞,-1]上是增函数,∴0<2x≤eq\f(1,2),当x∈(-∞,-1]时,m2-2m<8·2x恒成立等价于m2-2m≤0⇒0≤m≤2,故选A.15.若函数f(x)为定义在R上的偶函数,当x≥0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年非全日制用工协议模板解析
- 2024网络通信设备买卖协议指导
- 2024年新款高强度围墙护栏销售协议
- 2024银行股权质押借款协议模板
- 2024年化围栏施工协议范例
- 2024年门面房使用权转租协议样式
- DB11∕T 1708-2019 施工工地扬尘视频监控和数据传输技术规范
- 2024年度酒店早餐外判协议示例
- 2024城区鼠害防治协议范本
- 2024年企业员工劳动协议条款细则
- 《画出你的想象》教学课件
- 初中地理《世界的气候》单元教学设计以及思维导图
- 急性脑卒中抢救流程培训课件
- 幼儿园优质课件-中班《稻子和麦子》
- 幼儿成长档案电子通用版
- 进展性脑卒中的诊疗策略课件
- 宝钢QBQB4202014热镀锌锌铁合金镀层钢板及钢带
- 简约表格个人简历模板-05
- 短视频:策划+拍摄+制作+运营课件(完整版)
- 高速公路质量管理手册
- 护理技能大赛理论题库(内科儿科外科妇产科基础护理)
评论
0/150
提交评论