版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.三角尺在灯泡O的照射下在墙上形成的影子如图所示,OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:42.等腰三角形底边长为10㎝,周长为36cm,那么底角的余弦等于().A. B. C. D.3.如图,在△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A. B.12 C.14 D.214.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C.2倍 D.3倍5.把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A. B.C. D.6.下列事件中,属于必然事件的是()A.方程无实数解B.在某交通灯路口,遇到红灯C.若任取一个实数a,则D.买一注福利彩票,没有中奖7.如图,AB是⊙O的弦,OC⊥AB于点H,若∠AOC=60°,OH=1,则弦AB的长为()A.2 B. C.2 D.48.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.9.参加一次聚会的每两人都握了一次手,所有人共握手10
次,若共有
x
人参加聚会,则根据题意,可列方程()A. B. C. D.10.如图所示,在直角坐标系中,A点坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则当PQ最小时,P点的坐标为()A.(-3,0) B.(-2,0) C.(-4,0)或(-2,0) D.(-4,0)11.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.平行四边形 C.矩形 D.正五边形12.如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.点在抛物线上,则__________.(填“>”,“<”或“=”).14.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_______.15.对于为零的两个实数a,b,如果规定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值为____.16.如图,圆心都在x轴正半轴上的半圆O1,半圆O2,…,半圆On均与直线l相切,设半圆O1,半圆O2,…,半圆On的半径分别是r1,r2,…,rn,则当直线l与x轴所成锐角为30时,且r1=1时,r2017=_______.17.分解因式:___.18.已知一个几何体的主视图与俯视图如图所示,则该几何体可能是__________.三、解答题(共78分)19.(8分)如图,四边形ABCD为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B'C'恰好经过点D,且满足B'C'⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN=.20.(8分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.21.(8分)如图,已知圆锥的底面半径是2,母线长是6.(1)求这个圆锥的高和其侧面展开图中∠ABC的度数;(2)如果A是底面圆周上一点,从点A拉一根绳子绕圆锥侧面一圈再回到A点,求这根绳子的最短长度.22.(10分)如图,双曲线经过点,且与直线有两个不同的交点.(1)求的值;(2)求的取值范围.23.(10分)计算:24.(10分)如图,二次函数的图象与一次函数的图象交于点及点(1)求二次函数的解析式及的坐标(2)根据图象,直按写出满足的的取值范围25.(12分)已知,直线与抛物线相交于、两点,且的坐标是(1)求,的值;(2)抛物线的表达式及其对称轴和顶点坐标.26.如图,某农户计划用长12m的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m.(1)若生物园的面积为9m2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?
参考答案一、选择题(每题4分,共48分)1、B【解析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【详解】如图,∵OA=20cm,OA′=50cm,∴===∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选B.2、A【分析】过顶点A作底边BC的垂线AD,垂足是D点,构造直角三角形.根据等腰三角形的性质,运用三角函数的定义,则可以求得底角的余弦cosB的值.【详解】解:如图,作AD⊥BC于D点.则CD=5cm,AB=AC=13cm.∴底角的余弦=.故选A.【点睛】本题考查的是解直角三角形,解答本题的关键是熟练掌握等腰三角形的三线合一的性质:等腰三角形顶角平分线、底边上的高,底边上的中线重合.3、A【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
则△ABC的面积是:×AD×BC=×3×(3+4)=.
故选A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.4、A【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.5、C【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为:.故选:C.【点睛】此题考查了抛物线的平移,属于基本题型,熟知抛物线的平移规律是解答的关键.6、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A、方程2x2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)2>0是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A.【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.7、A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH=,然后利用垂径定理解答即可.【详解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH=OH=,∴AB=2AH=2故选:A.【点睛】本题考查了垂径定理以及解直角三角形,难度不大,掌握相关性质定理是解题关键.8、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.9、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.10、A【解析】此题根据切线的性质以及勾股定理,把要求PQ的最小值转化为求AP的最小值,再根据垂线段最短的性质进行分析求解.【详解】连接AQ,AP.根据切线的性质定理,得AQ⊥PQ;要使PQ最小,只需AP最小,则根据垂线段最短,则作AP⊥x轴于P,即为所求作的点P;此时P点的坐标是(-3,0).故选A.【点睛】此题应先将问题进行转化,再根据垂线段最短的性质进行分析.11、C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C.点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.12、A【分析】设A的横坐标为a,则纵坐标为,根据题意得出点B的坐标为,代入y=(x<0)即可求得k的值.【详解】解:设A的横坐标为a,则纵坐标为,
∵AC=3BC,∴B的横坐标为-a,
∵AB⊥y轴于点C,∴AB∥x轴,∴B(-a,),
∵点B在函数y=(x<0)的图象上,∴k=-a×=-1,
故选:A.【点睛】本题主要考查了反比例函数图象上点的坐标特征,表示出点B的坐标是解题的关键.二、填空题(每题4分,共24分)13、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.14、1【分析】根据矩形的性质得到BD=AC,所以求BD的最小值就是求AC的最小值,当点A在抛物线顶点的时候AC是最小的.【详解】解:∵,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为:1.【点睛】本题考查矩形的性质和二次函数图象的性质,解题的关键是通过矩形的性质将要求的BD转化成可以求最小值的AC.15、0或2【分析】先根据a☆b=ab-b-1得出关于x的一元二次方程,求出x的值即可.【详解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案为:0或2【点睛】本题考查了解一元二次方程以及新运算,理解题意正确列出一元二次方程是解题的关键.16、【详解】分别作O1A⊥l,O2B⊥l,O3C⊥l,如图,∵半圆O1,半圆O2,…,半圆On与直线l相切,∴O1A=r1,O2B=r2,O3C=r3,∵∠AOO1=30°,∴OO1=2O1A=2r1=2,在Rt△OO2B中,OO2=2O2B,即2+1+r2=2r2,∴r2=3,在Rt△OO2C中,OO3=2O2C,即2+1+2×3++r3=2r3,∴r3=9=32,同理可得r4=27=33,所以r2017=1.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了从特殊到一般的方法解决规律型问题.17、.【分析】直接提取公因式即可【详解】解:.故答案为:18、三棱柱【分析】根据主视图和俯视图的特征判断即可.【详解】解:根据主视图可知:此几何体前表面应为长方形根据俯视图可知,此几何体的上表面为三角形∴该几何体可能是三棱柱.故答案为:三棱柱.【点睛】此题考查的是根据主视图和俯视图判断几何体的形状,掌握常见几何体的三视图是解决此题的关键.三、解答题(共78分)19、(1)图见解析(2)图见解析(3)【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=2,∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=2−2设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(2−2)2,解得y=−1.(2−x)2=x2+(−1)2解得x=.故答案为:.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.20、(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.【解析】试题分析:(1)只要证到三个内角等于90°即可.(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.试题解析:解:(1)证明:如图,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.如答图1,连接OD,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.此时,CF=CB=1.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=2.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图2所示.S△BCD=BC•CD=BD•CF″′.∴1×2=5×CF″′.∴CF″′=.∴≤CF≤1.∵S矩形ABCD=,∴,即.∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴,即,解得.∴点G移动路线的长为.考点:1.圆的综合题;2.单动点问题;2.垂线段最短的性质;1.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.21、(1)∠ABC=120°;(2)这根绳子的最短长度是.【分析】(1)根据勾股定理直接求出圆锥的高,再利用圆锥侧面展开图弧长与其底面周长的长度关系,求出侧面展开图中∠ABC的度数即可;(2)首先求出BD的长,再利用勾股定理求出AD以及AC的长即可.【详解】(1)圆锥的高=底面圆的周长等于:2π×2=,解得:n=120°;
(2)连结AC,过B作BD⊥AC于D,则∠ABD=60°.由AB=6,可求得BD=3,∴AD═,AC=2AD=,即这根绳子的最短长度是.【点睛】此题主要考查了圆锥的计算、勾股定理、平面展开-最短路径问题.得到圆锥的底面圆的周长和扇形弧长相等是解决本题的突破点.22、(1)m=3;(2)﹣<k<1【分析】(1)将点P的坐标代入中,即可得出m的值;
(2)联立反比例函数与一次函数的解析式,消去y得到关于x的一元二次方程,根据根的判别式大于1列出不等式,进而即可求得k的取值范围.【详解】解:(1)∵双曲线y=经过点P(3,1),∴m=3×1=3;(2)∵双曲线y=与直线y=kx﹣2(k<1)有两个不同的交点,∴当=kx﹣2时,整理为:kx2﹣2x﹣3=1,△=(﹣2)2﹣4k•(﹣3)>1,∴k>﹣,∴k的取值范围是﹣<k<1.【点睛】本题主要考查了一次函数和反比例函数的交点问题,解答本题的关键是理解反比例函数与一次函数由两个交点时,联立解析式消去y得到的关于x的一元二次方程有两个实数根,即>1.23、【分析】分别按照二次根式化简,绝对值的化简,求一个数的立方根,负整数指数幂的计算法则进行计算,最后做加减.【详解】解:===【点睛】本题考查二次根式化简,绝对值的化简,求一个数的立方根,负整数指数幂的计算,熟练掌握相应的计算法则是本题的解题关键.24、(1)或,点B的坐标为(4,3);(2)当时,kx+b≥(x-2)2+m【分析】(1)先将点A(1,0)代入求出m的值,即可得出二次函数的解析式,再将代入二次函数的解析式即可求出的坐标;(2)根据图象和A、B的交点坐标可直接求出的x的取值范围.【详解】解:(1)∵二次函数y=(x-2)2+m的图象经过点A(1,0)∴解得:∴二次函数的解析式为解得:(不合题意,舍去)∴点B的坐标为(4,3)(2)由图像可知二次函数y=(x-2)2+m的图像与一次函数y=kx+b的图象交于点A(1,0)及点B(4,3)当时,kx+b≥(x-2)2+m【点睛】本题考查用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院采购科合同
- 化妆品包销协议书
- 哥俩赡养老人协议书(2篇)
- 二零二四年新能源项目投资合作协议
- 二零二四年度教育培训与人才引进合作协议
- 二零二四年度品牌合作与发展框架协议3篇
- 独家供货商协议
- 销售总代理合同协议
- 供应链物流平台服务合同
- 花岗岩供应商购销合同
- 智能家居员工劳动合同范本
- 《电工与电子技术》课程标准
- 人教部编版语文六年级上册第六单元习作:学写倡议书课件(共24张课件)
- 2024统编版新教材道德与法治七年级全册内容解读课件(深度)
- 第7课 实践出真知-【中职专用】2024年中职思想政治《哲学与人生》金牌课件(高教版2023·基础模块)
- 第十二届广东省安全知识竞赛暨粤港澳安全知识竞赛选拔赛考试题库资料(含答案)
- 四川省高职单招电气技术类《电子基础》复习备考试题库(浓缩500题)
- 细胞呼吸的原理和应用第2课时课件-2024-2025学年高一上学期生物人教版必修1
- 2024国家开放大学电大专科《学前儿童社会教育》期末试题及答案
- 2024-2030年中国铁路道岔行业发展趋势与前景展望战略分析报告
- 《数据可视化》题集
评论
0/150
提交评论