版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图是抛物线的部分图象,其顶点为,与轴交于点,与轴的一个交点为,连接.以下结论:①;②抛物线经过点;③;④当时,.其中正确的是()A.①③ B.②③ C.①④ D.②④2.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为3.分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到封闭图形就是莱洛三角形,如图,已知等边,,则该莱洛三角形的面积为()A. B. C. D.4.下列图形中,可以看作是中心对称图形的是()A. B. C. D.5.若A(﹣3,y1),,C(2,y3)在二次函数y=x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y16.下列条件中,一定能判断两个等腰三角形相似的是()A.都含有一个40°的内角 B.都含有一个50°的内角C.都含有一个60°的内角 D.都含有一个70°的内角7.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰8.如图,△ABC是一块锐角三角形材料,高线AH长8cm,底边BC长10cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为()A.40cm2 B.20cm2C.25cm2 D.10cm29.如图,正方形中,,为的中点,将沿翻折得到,延长交于,,垂足为,连接、.结论:①;②≌;③∽;④;⑤.其中的正确的个数是()A.2 B.3 C.4 D.510.在同一时刻,身高1.5米的小红在阳光下的影长2米,则影长为6米的大树的高是()A.4.5米 B.8米 C.5米 D.5.5米二、填空题(每小题3分,共24分)11.已知二次函数的图象如图所示,下列结论:①;②;③;④,其中正确的是_________.(把所有正确结论的序号都填在横线上)12.已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是_____.13.如果两个相似三角形的对应角平分线之比为2:5,较小三角形面积为8平方米,那么较大三角形的面积为_____________平方米.14.已知二次函数的图象与轴的一个交点为,则它与轴的另一个交点的坐标是__________.15.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.16.一元二次方程(x﹣5)(x﹣7)=0的解为_____.17.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.18.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.三、解答题(共66分)19.(10分)如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若.(1)求直线的表达式和反比例函数的表达式;(2)若直线与轴的交点为,求的面积.20.(6分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.21.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.(1)求反比例函数的表达式;(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.22.(8分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)请画出关于轴对称的;(2)以点为位似中心,相似比为1:2,在轴右侧,画出放大后的;23.(8分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.24.(8分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.25.(10分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.26.(10分)如图,在平面直角坐标系中,点B在x轴上,∠ABO=90°,AB=BO,直线y=﹣3x﹣4与反比例函数y=交于点A,交y轴于C点.(1)求k的值;(2)点D与点O关于AB对称,连接AD、CD,证明△ACD是直角三角形;(3)在(2)的条件下,点E在反比例函数图象上,若S△OCE=S△OCD,求点E的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据抛物线与y轴交于点(0,3),可得出k的值为4,从而得出抛物线的解析式为,将(-2,3)代入即可判断正确与否,抛物线与x轴的交点A(1,0),因此得出三角形的面积为2,当x-3<x<1时,y>0.据此判断④正确.【详解】解:把(0,3)代入抛物线解析式求出k=4,选项①错误,由此得出抛物线解析式为:,将(-2,3)代入解析式可得出选项②正确;抛物线与x轴的两交点分别为(1,0),(-3,0),∴OA=1,∵点M到x轴的距离为4,∴,选项③错误;∵当x-3<x<1时,y>0.∵∴y>0,选项④正确,故答案为D.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目找出抛物线的解析式是解题的关键,再利用其性质求解.2、C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A、由原方程,得,等式的两边同时加上一次项系数2的一半的平方1,得;故本选项正确;B、由原方程,得,等式的两边同时加上一次项系数−7的一半的平方,得,,故本选项正确;C、由原方程,得,等式的两边同时加上一次项系数8的一半的平方16,得(x+4)2=7;故本选项错误;D、由原方程,得3x2−4x=2,化二次项系数为1,得x2−x=等式的两边同时加上一次项系数−的一半的平方,得;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、D【分析】莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积,代入已知数据计算即可.【详解】解:如图所示,作AD⊥BC交BC于点D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°∵AD⊥BC,∴BD=CD=1,AD=,∴,∴莱洛三角形的面积为故答案为D.【点睛】本题考查了不规则图形的面积的求解,能够得出“莱洛三角形的面积为三个扇形的面积相加,再减去两个等边三角形的面积”是解题的关键.4、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;
B、是中心对称图形,故本选项符合题意;
C、不中心对称图形,故本选项不合题意;
D、不中心对称图形,故本选项不合题意.
故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.5、A【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【详解】解:对称轴为直线x=﹣=﹣1,∵a=1>0,∴x<﹣1时,y随x的增大而减小,x>﹣1时,y随x的增大而增大,∴y2<y1<y1.故选:A.【点睛】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解是解题的关键.6、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C.有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.7、D【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,
∵矩形的对边DG∥EF,
∴△ADG∽△ABC,∴,即,解得DG=(8-x),
四边形DEFG的面积=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,
所以,当x=4,即DE=4时,四边形DEFG最大面积为10cm1.
故选B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.9、C【分析】根据正方形的性质以及折叠的性质依次对各个选项进行判断即可.【详解】解:∵正方形ABCD中,AB=6,E为AB的中点
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°
∵△ADE沿DE翻折得到△FDE
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°
∴BE=EF=3,∠DFG=∠C=90°
∴∠EBF=∠EFB
∵∠AED+∠FED=∠EBF+∠EFB
∴∠DEF=∠EFB
∴BF∥ED
故结论①正确;
∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG
∴Rt△DFG≌Rt△DCG
∴结论②正确;
∵FH⊥BC,∠ABC=90°
∴AB∥FH,∠FHB=∠A=90°
∵∠EBF=∠BFH=∠AED
∴△FHB∽△EAD
∴结论③正确;
∵Rt△DFG≌Rt△DCG
∴FG=CG
设FG=CG=x,则BG=6-x,EG=3+x
在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2
解得:x=2
∴BG=4
∴tan∠GEB=,故结论④正确;
∵△FHB∽△EAD,且,∴BH=2FH
设FH=a,则HG=4-2a
在Rt△FHG中,由勾股定理得:a2+(4-2a)2=22
解得:a=2(舍去)或a=,∴S△BFG==2.4
故结论⑤错误;
故选:C.【点睛】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数,综合性较强.10、A【解析】根据同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似即可得.【详解】如图,由题意可得:由相似三角形的性质得:,即解得:(米)故选:A.【点睛】本题考查了相似三角形的性质,理解题意,将问题转化为利用相似三角形的性质求解是解题关键.二、填空题(每小题3分,共24分)11、①②③【分析】由图形先得到a,b,c和b2-4ac正负性,再来观察对称轴和x=-1时y的值,综合得出答案.【详解】解:开口向上的,与轴的交点得出,,,,①对,,,,②对抛物线与轴有两个交点,,③对从图可以看出当时,对应的值大于0,,④错故答案:①②③【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握其函数图象与关系.12、﹣1.5或2【解析】将二次函数配方成顶点式,分m<-1、m>2和-1≤m≤2三种情况,根据y的最小值为-2,结合二次函数的性质求解可得.【详解】y=x2-2mx=(x-m)2-m2,
①若m<-1,当x=-1时,y=1+2m=-2,
解得:m=-32=-1.5;
②若m>2,当x=2时,y=4-4m=-2,
解得:m=32<2(舍);
③若-1≤m≤2,当x=m时,y=-m2=-2,
解得:m=2或m=-2<-1(舍),
∴m的值为-1.5或2,
故答案为:﹣1.5或【点睛】本题考查了二次函数的最值,根据二次函数的增减性分类讨论是解题的关键.13、1【分析】设较大三角形的面积为x平方米.根据相似三角形面积的比等于相似比的平方列出方程,然后求解即可.【详解】设较大三角形的面积为x平方米.∵两个相似三角形的对应角平分线之比为2:5,∴两个相似三角形的相似比是2:5,∴两个相似三角形的面积比是4:25,∴8:x=4:25,解得:x=1.故答案为:1.【点睛】本题考查了相似三角形的性质,相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方、相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.14、【分析】确定函数的对称轴=-2,即可求出.【详解】解:函数的对称轴=-2,则与轴的另一个交点的坐标为(-3,0)故答案为(-3,0)【点睛】此题主要考查了抛物线与x轴的交点和函数图像上点的坐标的特征,熟练掌握二次函数与坐标轴的交点、二次函数的对称轴是解题的关键.15、或.【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.16、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.17、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.18、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.三、解答题(共66分)19、(1),;(1)1【分析】(1)先由S△AOB=4,求得点B的坐标是(1,4),把点B(1,4)代入反比例函数的解析式为,可得反比例函数的解析式为:;再把A(-1,0)、B(1,4)代入直线AB的解析式为y=ax+b可得直线AB的解析式为y=x+1.(1)把x=0代入直线AB的解析式y=x+1得y=1,即OC=1,可得S△OCB=OC×1=×1×1=1.【详解】解:(1)由A(-1,0),得OA=1;∵点B(1,m)在第一象限内,S△AOB=4,∴OA•m=4;∴m=4;∴点B的坐标是(1,4);设该反比例函数的解析式为(k≠0),将点B的坐标代入,得,∴k=8;∴反比例函数的解析式为:;设直线AB的解析式为y=ax+b(k≠0),将点A,B的坐标分别代入,得,解得:;∴直线的表达式是;(1)在y=x+1中,令x=0,得y=1.∴点C的坐标是(0,1),∴OC=1;∴S△OCB=OC×1=×1×1=1.【点睛】本题考查反比例函数和一次函数解析式的确定、图形的面积求法等知识及综合应用知识、解决问题的能力.此题有点难度.20、(1)证明见解析;(2)【分析】(1)连接OE,如图,通过证明∠GEA+∠OEA=90°得到OE⊥GE,然后根据切线的判定定理得到EG是⊙O的切线;(2)连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后证明Rt△OEM∽Rt△CHA,再利用相似比计算OM的长.【详解】(1)证明:连接OE,如图,
∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线;(2)解:连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,在Rt△OCH中,,解得r=3,在Rt△ACH中,AC=,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴,即,解得:OM=.【点睛】本题考查了切线的判断与性质:圆的切线垂直于经过切点的半径.经过半径的外端且垂直于这条半径的直线是圆的切线.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径.也考查了勾股定理.21、(1)y=;(2)2.【分析】(1)先求出点A的坐标,然后利用待定系数法即可求出结论;(2)先求出点C的坐标,然后求出点E的坐标,最后利用四边形OCEA的面积=+即可得出结论.【详解】解:(1)当x=1时,y=x﹣2=1﹣2=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=;(2)当x=0时,y=x﹣2=﹣2,则C(0,﹣2),∵AE⊥x轴于点E,∴E(1,0),∴四边形OCEA的面积=+=×1×2+×1×2=2.【点睛】此题考查的是反比例函数与一次函数的交点问题,掌握利用待定系数法求反比例函数解析式和三角形的面积公式是解决此题的关键.22、(1)见解析;(2)见解析.【分析】(1)利用关于轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出轴对称的.画出放大后的位似.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.23、(1)见解析;(2)见解析.【分析】(1)根据矩形ACBD即可解决问题.(2)利用平行线分线段成比例定理解决问题即可.【详解】解:(1)如图,线段CD即为所求.(2)如图,线段EF即为所求,注意有两种情形.【点睛】本题考查作图-应用与设计,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.24、1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出进而求出ON,在Rt△CON中,根据勾股定理求出根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,∴ON=MN﹣OM=3,在Rt△CON中,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出辅助线,构造直角三角形是解题的关键.25、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,证明△ABC∽△BEC,可得,由此构建方程即可解决问题.(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”;②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石船经济课程设计
- 药品生产大学课程设计
- 幼儿手势舞教学课程设计
- 电子钟表课程设计
- 新冉的课程设计
- 穿鞋带的课程设计
- 资产负债表优化策略计划
- 酒店餐饮行业安全生产工作总结
- 青少年培训机构前台接待总结
- 家具制造工艺改良
- 超星尔雅学习通《西厢记》赏析(首都师范大学)网课章节测试答案
- 切削液的配方
- 塑料门窗及型材功能结构尺寸
- 2023-2024学年湖南省怀化市小学数学五年级上册期末深度自测试卷
- GB 7101-2022食品安全国家标准饮料
- 超实用的发声训练方法
- 《第六课 从传统到现代课件》高中美术湘美版美术鉴赏
- 英语四六级讲座课件
- Unit 3 On the move Understanding ideas(Running into a better life)课件- 高一上学期英语外研版(2019)必修第二册
- 白假丝酵母菌课件
- SCA自动涂胶系统培训讲义课件
评论
0/150
提交评论