版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省张掖市名校数学九上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,阳光透过窗户洒落在地面上,已知窗户高,光亮区的顶端距离墙角,光亮区的底端距离墙角,则窗户的底端距离地面的高度()为()A. B. C. D.2.下列事件中是不可能事件的是()A.三角形内角和小于180° B.两实数之和为正C.买体育彩票中奖 D.抛一枚硬币2次都正面朝上3.在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每1个单位长度.点P在弧线上运动的速度为每秒个单位长度,则2019秒时,点P的坐标是()A. B.C. D.4.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.5.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.6.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上7.下列方程中,是关于x的一元二次方程的是()A. B. C. D.8.下列各式计算正确的是()A. B. C. D.9.已知是单位向量,且,那么下列说法错误的是()A.∥ B.||=2 C.||=﹣2|| D.=﹣10.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()A.
B.
C.
D.1二、填空题(每小题3分,共24分)11.在一次夏令营中,小亮从位于点的营地出发,沿北偏东60°方向走了到达地,然后再沿北偏西30°方向走了若干千米到达地,测得地在地南偏西30°方向,则、两地的距离为_________.12.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=_____14.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.15.如图,与⊙相切于点,,,则⊙的半径为__________.16.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.17.如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.18.直角三角形ABC中,∠B=90°,若cosA=,AB=12,则直角边BC长为___.三、解答题(共66分)19.(10分)如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的长.20.(6分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.21.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.22.(8分)从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.23.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题:(1)表中________,________,样本成绩的中位数落在证明见解析________范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?24.(8分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.25.(10分)在平面直角坐标系中,点为坐标原点,一次函数的图象与反比例函数的图象交于两点,若,点的横坐标为-2.(1)求反比例函数及一次函数的解析式;(2)若一次函数的图象交轴于点,过点作轴的垂线交反比例函数图象于点,连接,求的面积.26.(10分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据光沿直线传播的原理可知AE∥BD,则∽,根据相似三角形的对应边成比例即可解答.【详解】解:∵AE∥BD∴∽∴∵,,∴解得:经检验是分式方程的解.故选:A.【点睛】本题考查了相似三角形的判定及性质,解题关键是熟知:平行于三角形一边的直线和其他两边或延长线相交,所截得的三角形与原三角形相似.2、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.3、B【分析】设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0)”,依此规律即可得出结论.【详解】解:设第n秒运动到Pn(n为自然数)点,观察,发现规律:P1(,),P2(1,0),P3(,﹣),P4(2,0),P5(,),…,∴P4n+1(,),P4n+2(n+1,0),P4n+3(,﹣),P4n+4(2n+2,0).∵2019=4×504+3,∴P2019为(,﹣),故答案为B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律并根据规律找出点的坐标.4、D【解析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.5、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.6、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.7、C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、a=0,故本选项错误;B、有两个未知数,故本选项错误;C、本选项正确;D、含有分式,不是整式方程,故本选项错误;故选:C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.8、D【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A.与不能合并,所以A选项错误;B.原式=,所以B选项错误;C.原式=6×3=18,所以C选项错误;D.原式所以D选正确.故选D.【点睛】考查二次根式的运算,熟练掌握二次根式加减乘除的运算法则是解题的关键.9、C【详解】解:∵是单位向量,且,,∴,,,,故C选项错误,故选C.10、C【详解】解:∵共有4个球,红球有1个,∴摸出的球是红球的概率是:P=.故选C.【点睛】本题考查概率公式.二、填空题(每小题3分,共24分)11、【分析】由已知可得到△ABC是直角三角形,从而根据三角函数即可求得AC的长.【详解】解:如图.由题意可知,AB=5km,∠2=30°,∠EAB=60°,∠3=30°.
∵EF//PQ,
∴∠1=∠EAB=60°
又∵∠2=30°,
∴∠ABC=180°−∠1−∠2=180°−60°−30°=90°,
∴△ABC是直角三角形.
又∵MN//PQ,
∴∠4=∠2=30°.
∴∠ACB=∠4+∠3=30°+30°=60°.
∴AC===(km),
故答案为.【点睛】本题考查了解直角三角形的相关知识,解答此类题目的关键是根据题意画出图形利用解直角三角形的相关知识解答.12、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.13、58°【解析】根据圆周角定理得到∠BAD=∠BCD=32°,∠ADB=90°,根据互余的概念计算即可.【详解】由圆周角定理得,∠BAD=∠BCD=32°,∵AB为⊙O的直径,∴∴故答案为【点睛】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等.14、1:1.【分析】先根据三角形中位线定理得出DE∥AB,DE=AB,可推出△CDE∽△CAB,即可得出答案.【详解】解:∵点D,E分别是AC和BC的中点,∴DE为△ABC中位线,∴DE∥AB,DE=AB,∴△CDE∽△CAB,∴==.故答案为:1:1.【点睛】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟练掌握相似三角形的判定和性质定理是解题的关键.15、【解析】与⊙相切于点,得出△ABO为直角三角形,再由勾股定理计算即可.【详解】解:连接OB,∵与⊙相切于点,∴OB⊥AB,△ABO为直角三角形,又∵,,由勾股定理得故答案为:【点睛】本题考查了切线的性质,通过切线可得垂直,进而可应用勾股定理计算,解题的关键是熟知切线的性质.16、19.2m【分析】根据在同一时物体的高度和影长成正比,设出教学楼高度即可列方程解答.【详解】设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.【点睛】本题考查了相似三角形的应用,解题时关键是找出相等的比例关系,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.17、16【分析】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.【详解】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE为等边三角形,∴AE=AC=8,CF=AC=4,则四边形ABCD的面积=△CAB的面积=×8×4=16,故答案为:16.【点睛】考核知识点:等边三角形判定和性质,三角函数.作辅助线,构造直角三角形是关键.18、1【分析】先利用三角函数解直角三角形,求得AC=20,再根据勾股定理即可求解.【详解】解:∵在直角三角形ABC中,∠B=90°,cosA=,AB=12,∴cosA===,∴AC=20,∴BC===1.故答案是:1.【点睛】此题主要考查勾股定理、锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.三、解答题(共66分)19、(1)详见解析;(1)1.【分析】(1)根据OD⊥BC于E可知,所以BD=CD,故可得出结论;(1)先根据圆周角定理得出∠ACB=90°,再OD⊥BC于E可知OD∥AC,由于点O是AB的中点,所以OE是△ABC的中位线,故,在Rt△OBE中根据勾股定理可求出OB的长,故可得出DE的长,进而得出结论.【详解】解:(1)∵OD⊥BC于E,∴,∴BD=CD,
∴∠BCD=∠CBD;(1)∵AB是⊙O的直径,
∴∠ACB=90°,
∵OD⊥BC于E,
∴OD∥AC,
∵点O是AB的中点,
∴OE是△ABC的中位线,在Rt△OBE中,
∵BE=4,OE=3,,即OD=OB=5,
∴DE=OD-OE=5-3=1.20、(1)见解析(2)【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,OM==.∵∠DOF=60°,∴∠MOF=90°.∴MF=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.21、(1)100、35;(2)补图见解析;(3)800人;(4)【解析】分析:(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案;(4)列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)14;(2)1【解析】试题分析:(1)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.试题解析:(1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为:13(2)∵抽取2名,可得:甲乙,甲丙,乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家用纺织品的产品线调整与升级换代考核试卷
- 涡轮增压汽油发动机调教考核试卷
- 森林改培与生态经济发展考核试卷
- 海水淡化处理中的污泥处理技术应用考核试卷
- 财政支出项目绩效评价报告
- DB11T 269-2014 粪便处理设施运行管理规范
- DB11∕T 1796-2020 文物建筑三维信息采集技术规程
- 大班课件比赛教学课件
- 医院新员工培训计划
- 淮阴工学院《快速表现》2021-2022学年第一学期期末试卷
- 国家开放大学《电气传动与调速系统》章节测试参考答案
- 须弥(短篇小说)
- 旋风除尘器设计与计算
- 《装配基础知识培训》
- 出口退税的具体计算方法及出口报价技巧
- PCB镀层与SMT焊接
- Unit 1 This is my new friend. Lesson 5 课件
- 2019年青年英才培养计划项目申报表
- 剪纸教学课件53489.ppt
- 芳香油的提取
- 企业人才测评发展中心建设方案
评论
0/150
提交评论