山东省济南市名校2025届九上数学期末经典试题含解析_第1页
山东省济南市名校2025届九上数学期末经典试题含解析_第2页
山东省济南市名校2025届九上数学期末经典试题含解析_第3页
山东省济南市名校2025届九上数学期末经典试题含解析_第4页
山东省济南市名校2025届九上数学期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市名校2025届九上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,是正方形的外接圆,点是上的一点,则的度数是()A. B.C. D.2.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容.如图,已知与相切于点,点在上.求证:.证明:连接并延长,交于点,连接.∵与相切于点,∴,∴.∵@是的直径,∴(直径所对的圆周角是90°),∴,∴◎.∵,∴▲(同弧所对的※相等),∴.下列选项中,回答正确的是()A.@代表 B.◎代表 C.▲代表 D.※代表圆心角3.如图,DE是的中位线,则与的面积的比是A.1:2B.1:3C.1:4D.1:94.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为()A.-8 B.-6 C.-4 D.-25.如图,在⊙O中,AB⊥OC,垂足为点D,AB=8,CD=2,若点P是优弧上的任意一点,则sin∠APB=()A. B. C. D.6.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且.图象上有一点在轴下方,则下列判断正确的是()A. B. C. D.7.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《在线体育》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根8.已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13 B.11 C.11或1 D.12或19.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.; B.; C.; D.以上都不对;10.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5 C.v= D.v=11.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为()A.-2 B.2 C.-1 D.112.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(每题4分,共24分)13.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.14.如图,A,B,C是⊙O上三点,∠AOC=∠B,则∠B=_______度.15.已知一组数据:4,2,5,0,1.这组数据的中位数是_____.16.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.17.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC=__.18.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).三、解答题(共78分)19.(8分)正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=CF+AE;(2)当AE=2时,求EF的长.20.(8分)已知关于x的一元二次方程x1﹣1(a﹣1)x+a1﹣a﹣1=0有两个不相等的实数根x1,x1.(1)若a为正整数,求a的值;(1)若x1,x1满足x11+x11﹣x1x1=16,求a的值.21.(8分)解方程:(1)(2)22.(10分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.23.(10分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C.(1)画出△ABC绕点B顺时针旋转90°后得到的△A1B1C1;(2)若点D,E也是网格中的格点,画出△BDE,使得△BDE与△ABC相似(不包括全等),并求相似比.24.(10分)如图,在中,,点为上一点且与不重合.,交于.(1)求证:;(2)设,求关于的函数表达式;(3)当时,直接写出_________.25.(12分)综合与探究:如图,已知抛物线与x轴相交于A、B两点,与y轴交于点C,连接BC,点P为线段BC上一动点,过点P作BC的垂线交抛物线于点Q,请解答下列问题:(1)求抛物线与x轴的交点A和B的坐标及顶点坐标(2)求线段PQ长度的最大值,并直接写出及此时点P的坐标.26..如图,小明在大楼的东侧A处发现正前方仰角为75°的方向上有一热气球在C处,此时,小亮在大楼的西侧B处也测得气球在其正前方仰角为30°的位置上,已知AB的距离为60米,试求此时小明、小亮两人与气球的距离AC和BC.(结果保留根号)

参考答案一、选择题(每题4分,共48分)1、C【分析】首先连接OB,OA,由⊙O是正方形ABCD的外接圆,即可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数.【详解】解:连接OB,OA,∵⊙O是正方形ABCD的外接圆,∴∠BOA=90°,∴=∠BOA=45°.故选:C.【点睛】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识.此题难度不大,注意准确作出辅助线,注意数形结合思想的应用.2、B【分析】根据圆周角定理和切线的性质以及余角的性质判定即可.【详解】解:由证明过程可知:A:@代表AE,故选项错误;B:由同角的余角相等可知:◎代表,故选项正确;C和D:由同弧所对的圆周角相等可得▲代表∠E,※代表圆周角,故选项错误;故选B.【点睛】本题考查了切线的性质,圆周角定理,余角的性质等知识点,熟记知识点是解题的关键.3、C【分析】由中位线可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比为1:2;根据相似三角形的面积比是相似比的平方,即得结果.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比为1:2,∵相似三角形的面积比是相似比的平方,∴△ADE与△ABC的面积的比为1:4.故选C.【点睛】本题要熟悉中位线的性质及相似三角形的判定及性质,牢记相似三角形的面积比是相似比的平方.4、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可.【详解】解:连接OB,过点B作轴于点D,过点C作于点E,∵点P是BC的中点∴PC=PB∵∴∴∵∴∵点在双曲线上∴∴∴∴∵点在双曲线上∴∴.故选:C.【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键.5、B【分析】如图,连接OA,OB.设OA=OB=x.利用勾股定理构建方程求出x,再证明∠APB=∠AOD即可解决问题.【详解】如图,连接OA,OB.设OA=OB=x.∵OC⊥AB,∴AD=DB=4,在Rt△AOD中,则有x2=42+(x﹣2)2,∴x=5,∵OA=OB,OD⊥AB,∴∠AOD=∠BOD,∵∠APB=∠AOB=∠AOD,∴sin∠APB=sin∠AOD==,故选:B.【点睛】考查了圆周角定理和解直角三角形等知识,解题的关键是熟练灵活运用其相关知识.6、D【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.7、D【分析】根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.【详解】A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放《在线体育》是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D.方程中必有实数根,是必然事件,故本选项正确.故选:D.【点睛】解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点有:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】首先从方程x2﹣6x+8=0中,确定第三边的边长为2或4;其次考查2,3,6或4,3,6能否构成三角形,从而求出三角形的周长.【详解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,当第三边是2时,2+3<6,不能构成三角形,应舍去;当第三边是4时,三角形的周长为:4+3+6=1.故选:A.【点睛】考查了三角形三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,不符合题意的应弃之.9、C【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:

由勾股定理得:AB=,

所以cosB=,sinB=,所以只有选项C正确;

故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.10、C【分析】根据速度=路程÷时间即可写出时间t与速度(平均速度)v之间的函数关系式.【详解】∵速度=路程÷时间,∴v=.故选C.【点睛】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.11、D【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.二、填空题(每题4分,共24分)13、【解析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.14、1【分析】连结OB,可知△OAB和△OBC都是等腰三角形,∠ABC=∠A+∠C=∠AOC,四边形内角和360゜,可求∠B.【详解】如图,连结OB,∵OA=OB=OC,∴△OAB和△OBC都是等腰三角形,∴∠A=∠OBA,∠C=∠OBC,∴∠ABC=∠OBA+∠OBC=∠A+∠C,∴∠A+∠C=∠ABC=∠AOC∵∠A+∠ABC+∠C+∠AOC=360゜∴3∠ABC=360゜∴∠ABC=1゜即∠B=1゜.故答案为:1.【点睛】本题考查圆周角度数问题,要抓住半径相等构造两个等腰三角形,把问题转化为解∠B的方程是关键.15、1【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【详解】解:从小到大排列此数据为:0,2,1,4,5,第1位是1,则这组数据的中位数是1.故答案为:1.【点睛】本题考查了中位数的定义,解决本题的关键是熟练掌握中位数的概念及中位数的确定方法.16、﹣1【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b的值,再代入ab中可得到答案.【详解】解:∵P(a,3)与P′(-4,b)关于原点的对称,

∴a=4,b=-3,

∴ab=4×(-3)=-1,

故答案为:-1.【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.17、30°【分析】根据AB是⊙O的直径可得出∠ACB=90°,再根据三角形内角和为180°以及∠OBC=60°,即可求出∠BAC的度数.【详解】∵AB是⊙O的直径,

∴∠ACB=90°,

又∵∠OBC=60°,

∴∠BAC=180°-∠ACB-∠ABC=30°.

故答案为:30°.【点睛】本题考查了圆周角定理以及角的计算,解题的关键是找出∠ACB=90°.本题属于基础题,难度不大,解决该题型题目时,找出直径所对的圆周角为90°是关键.18、【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=lr=×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=lr是解题的关键.三、解答题(共78分)19、(1)见解析;(2)1,详见解析.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=41°,得到∠MDF为41°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=CF+AE;(2)由(1)的全等得到AE=CM=2,正方形的边长为6,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=8﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【详解】(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,AE=CM,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=41°,∴∠FDM=∠EDF=41°,在△DEF和△DMF中,∵,∴△DEF≌△DMF(SAS),∴EF=MF,∴EF=CF+AE;(2)解:设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=6+2=8,∴BF=BM﹣MF=BM﹣EF=8﹣x,∵EB=AB﹣AE=6﹣2=4,在Rt△EBF中,由勾股定理得,即,解得:x=1,则EF=1.【点睛】本题主要考查正方形的性质、旋转的性质、三角形全等及勾股定理,关键是根据半角旋转得到三角形的全等,然后利用勾股定理求得线段的长.20、(2)a=2,2;(2)a=﹣2.【分析】(2)根据关于x的一元二次方程x2-2(a-2)x+a2-a-2=0有两个不相等的实数根,得到△=[-2(a-2)]2-4(a2-a-2)>0,于是得到结论;

(2)根据x2+x2=2(a-2),x2x2=a2-a-2,代入x22+x22-x2x2=26,解方程即可得到结论.【详解】解:(2)∵关于x的一元二次方程x2﹣2(a﹣2)x+a2﹣a﹣2=0有两个不相等实数根,∴△=[﹣2(a﹣2)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,∴a=2,2;(2)∵x2+x2=2(a﹣2),x2x2=a2﹣a﹣2,∵x22+x22﹣x2x2=26,∴(x2+x2)2﹣3x2x2=26,∴[2(a﹣2)]2﹣3(a2﹣a﹣2)=26,解得:a2=﹣2,a2=6,∵a<3,∴a=﹣2.【点睛】本题考查的是一元二次方程根与系数的关系及根的判别式,先判断出a的取值范围,再由根与系数的关系得出方程是解答此题的关键.21、(1),;(2)x1=2,x2=-1.【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)提取公因式化为积的形式,然后利用两因式相乘积为0,两因式中至少有一个为0,转化为两个一元一次方程来求解.【详解】解:(1)方程整理得:,

配方得:,即,

开方得:,

解得:,;(2)方程变形得:,即,即或,解得.【点睛】本题考查解一元二次方程.熟练掌握解一元二次方程的方法,并能结合实际情况选择合适的方法是解决此题的关键.22、(1)证明见解析;(2)①30°;②22.5°.【解析】分析:(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.详解:(1)证明:连接OC,如图,.∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.23、(1)如图1所示:△A1B1C1,即为所求;见解析;(1)如图1所示:△BDE,即为所求,见解析;相似比为::1.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(1)直接利用相似图形的性质得出符合题意的答案.【详解】(1)如图1所示:△A1B1C1,即为所求;(1)如图1所示:△BDE,即为所求,相似比为::1.【点睛】本题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键.24、(1)详见解析;(2);(3)1【分析】(1)先根据题意得出∠B=∠C,再根据等量代换得出∠ADB=∠DEC即可得证;(2)根据相似三角形的性质得出,将相应值代入化简即可得出答案;(3)根据相似三角形的性质得出,再根据已知即可证明AE=EC从而得出答案.【详解】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°,BC=∵∠ADE=45°,∴∠ADB+∠CDE=∠CDE+∠DEC=135°∴∠ADB=∠DEC,∴△ABD∽△DCE(2)∵△ABD∽△DCE,∴,∵BD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论