版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3.RandomVariablesandProbabilityDistribution
ConceptofaRandomVariable
Example:threeelectroniccomponentsaretested
samplespace(N:nondefective,D:defective)
S={NNN,NND,NDN,DNN,NDD,DND,DDN,DDD}
allocateanumericaldescriptionofeachoutcome
concernedwiththenumberofdefectives
eachpointinthesamplespacewillbeassignedanumericalvalueof0,1,2,or3.
randomvariableX:thenumberofdefectiveitems,arandomquantity
randomvariable
Definition3.1
Arandomvariableisafunctionthatassociatesarealnumberwitheachelementinthesamplespace.
X:arandomvariable
x:oneofitsvalues
EachpossiblevalueofXrepresentsaneventthatisasubsetofthesamplespace
electroniccomponenttest:
E={DDN,DND,NDD}={X=2}.
Example3.1Twoballsaredrawninsuccessionwithoutreplacementfromanurncontaining4redballsand3blackballs.Yisthenumberofredballs.ThepossibleoutcomesandthevaluesyoftherandomvariableY?
Example3.2Astockroomclerkreturnsthreesafetyhelmetsatrandomtothreesteelmillemployeeswhohadpreviouslycheckedthem.IfSmith,Jones,andBrown,inthatorder,receiveoneofthethreehats,listthesamplepointsforthepossibleordersofreturningthehelmets,andfindthevaluemoftherandomvariableMthatrepresentsthenumberofcorrectmatches.
ThesamplespacecontainsafinitenumberofelementsinExample3.1and3.2.
anotherexample:adieisthrownuntila5occurs,
F:theoccurrenceofa5
N:thenonoccurrenceofa5
obtainasamplespacewithanunendingsequenceofelements
S={F,NF,NNF,NNNF,...}
thenumberofelementscanbeequatedtothenumberofwholenumbers;canbecounted
Definition3.2Ifasamplespacecontainsafinitenumberofpossibilitiesoranunendingsequencewithasmanyelementsastherearewholenumbers,itiscalledadiscretesamplespace.
Theoutcomesofsomestatisticalexperimentsmaybeneitherfinitenorcountable.
example:measurethedistancesthatacertainmakeofautomobilewilltraveloveraprescribedtestcourseon5litersofgasoline
distance:avariablemeasuredtoanydegreeofaccuracy
wehaveinfinitenumberofpossibledistancesinthesamplespace,cannotbeequatedtothenumberofwholenumbers.
Definition3.3
Ifasamplespacecontainsaninfinitenumberofpossibilitiesequaltothenumberofpointsonalinesegment,itiscalledacontinuoussamplespace
Arandomvariableiscalledadiscreterandomvariableifitssetofpossibleoutcomesiscountable.
YinExample3.1andMinExample3.2arediscreterandomvariables.
Whenarandomvariablecantakeonvaluesonacontinuousscale,itiscalledacontinuousrandomvariable.
Themeasureddistancethatacertainmakeofautomobilewilltraveloveratestcourseon5litersofgasolineisacontinuousrandomvariable.
continuousrandomvariablesrepresentmeasureddata:
allpossibleheights,weights,temperatures,distance,orlifeperiods.
discreterandomvariablesrepresentcountdata:thenumberofdefectivesinasampleofkitems,orthenumberofhighwayfatalitiesperyearinagivenstate.
2.DiscreteProbabilityDistribution
Adiscreterandomvariableassumeseachofitsvalueswithacertainprobability
assumeequalweightsfortheelementsinExample3.2,what'stheprobabilitythatnoemployeegetsbackhisrighthelmet.
TheprobabilitythatMassumedthevaluezerois1/3.
ThepossiblevaluesmofMandtheirprobabilitiesare
013
1/31/21/6
ProbabilityMassFunction
ItisconvenienttorepresentalltheprobabilitiesofarandomvariableXbyaformula.
writep(x)=P(X=x)
Thesetoforderedpairs(x,p(x))iscalledtheprobabilityfunctionorprobabilitydistributionofthediscreterandomvariableX.
Definition3.4
Thesetoforderedpairs(x,p(x))isaprobabilityfunction,probabilitymassfunction,orprobabilitydistributionofthediscreterandomvariableXif,foreachpossibleoutcomex
Example3.3Ashipmentof8similarmicrocomputerstoaretailoutletcontains3thataredefective.Ifaschoolmakesarandompurchaseof2ofthesecomputers,findtheprobabilitydistributionforthenumberofdefectives.
Solution
X:thepossiblenumbersofdefectivecomputers
xcanbeanyofthenumbers0,1,and2.
CumulativeFunction
TherearemanyproblemwherewemaywishtocomputetheprobabilitythattheobservedvalueofarandomvariableXwillbelessthanorequaltosomerealnumberx.
WritingF(x)=P(X≤x)foreveryrealnumberx.
Definition3.5
ThecumulativedistributionF(x)ofadiscreterandomvariableXwithprobabilitydistributionp(x)is
FortherandomvariableM,thenumberofcorrectmatchesinExample3.2,wehave
ThecumulativedistributionofMis
Remark.thecumulativedistributionisdefinednotonlyforthevaluesassumedbygivenrandomvariablebutforallrealnumbers.
Example3.5TheprobabilitydistributionofXis
FindthecumulativedistributionoftherandomvariableX.
Certainprobabilitydistributionareapplicabletomorethanonephysicalsituation.
TheprobabilitydistributionofExample3.5canapplytodifferentexperimentalsituations.
Example1:thedistributionofY,thenumberofheadswhenacoinistossed4times
Example2:thedistributionofW,thenumberofreadcardsthatoccurwhen4cardsaredrawnatrandomfromadeckinsuccessionwitheachcardreplacedandthedeckshuffledbeforethenextdrawing.
graphs
Itishelpfultolookataprobabilitydistributioningraphicform.
barchart;
histogram;
cumulativedistribution.
ContinuousProbabilityDistribution
ContinuousProbabilitydistribution
Acontinuousrandomvariablehasaprobabilityofzeroofassumingexactlyanyofitsvalues.Consequently,itsprobabilitydistributioncannotbegivenintabularform.
Example:theheightsofallpeopleover21yearsofage(randomvariable)
Between163.5and164.5centimeters,oreven163.99and164.01centimeters,thereareaninfinitenumberofheights,oneofwhichis164centimeters.
Theprobabilityofselectingapersonatrandomwhoisexactly164centimeterstallandnotoneoftheinfinitelylargesetofheightssocloseto164centimetersisremote.
Weassignaprobabilityofzerotoapoint,butthisisnotthecaseforaninterval.Wewilldealwithanintervalratherthanapointvalue,suchasP(a<X<b),P(W≥c).
P(a≤X≤b)=P(a<X≤b)=P(a≤X<b)=P(a<X<b)
whereXiscontinuous.Itdoesnotmatterwhetherweincludeanendpointoftheintervalornot.ThisisnottruewhenXisdiscrete.
Althoughtheprobabilitydistributionofacontinuousrandomvariablecannotbepresentedintabularform,itcanbestatedasaformula.
refertohistogram
Definition3.6Thefunctionf(x)isaprobabilitydensityfunctionforthecontinuousrandomvariableX,definedoverthesetofrealnumbersR,if
Example3.6Supposethattheerrorinthereactiontemperature,inoC,foracontrolledlaboratoryexperimentisacontinuousrandomvariableXhavingtheprobabilitydensityfunction
(a)Verifycondition2ofDefinition3.6.
(b)FindP(0<X≤1).
Solution:......P(0<X≤1)=1/9.
Definition3.7ThecumulativedistributionF(x)ofacontinuousrandomvariableXwithdensityfunctionf(x)is
immediateconsequence:
Example3.7ForthedensityfunctionofExample3.6find
F(x),anduseittoevaluateP(0<x≤1).
4.JointProbabilityDistributions
theprecedingsections:one-dimensionalsamplespacesandasinglerandomvariable
situations:desirabletorecordthesimultaneousoutcomesofseveralrandomvariables.
JointProbabilityDistribution
Examples
1.wemightmeasuretheamountofprecipitatePandvolumeVofgasreleasedfromacontrolledchemicalexperiment;wegetatwo-dimensionalsamplespaceconsistingoftheoutcomes(p,v).
2.Inastudytodeterminethelikelihoodofsuccessincollege,basedonhighschooldata,onemightuseathree-dimensionalsamplespaceandrecordforeachindividualhisorheraptitudetestscore,highschoolrankinclass,andgrade-pointaverageattheendofthefreshmanyearincollege.
XandYaretwodiscreterandomvariables,thejointprobabilitydistributionofXandYis
p(x,y)=P(X=x,Y=y)
thevaluesp(x,y)givetheprobabilitythatoutcomesxandyoccuratthesametime.
Definition3.8Thefunctionp(x,y)isajointprobabilitydistributionorprobabilitymassfunctionofthediscreterandomvariablesXandYif
Example3.8
Tworefillsforaballpointpenareselectedatrandomfromaboxthatcontains3bluerefills,2redrefills,and3greenrefills.IfXisthenumberofbluerefillsandYisthenumberofredrefillsselected,find
(a)thejointprobabilityfunctionp(x,y)
(b)P[(X,Y)∈A]whereAistheregion{(x,y)|x+y≤1}
Solution
thepossiblepairsofvalues(x,y)are(0,0),(0,1),(1,0),(1,1),(0,2),and(2,0).
p(x,y)representstheprobabilitythatxblueandyredrefillsareselected.
(b)P[(X,Y)∈A]=9/14
presenttheresultsinTable3.1
Definition3.9Thefunctionf(x,y)isajointdensityfunctionofthecontinuousrandomvariablesXandYif
WhenXandYarecontinuousrandomvariables,thejointdensityfunctionf(x,y)isasurfacelyingabovethexyplane.
P[(X,Y)∈A],whereAisanyregioninthexyplane,isequaltothevolumeoftherightcylinderboundedbythebaseAandthesurface.
Example3.9Supposethatthejointdensityfunctionis
(b)P[(X,Y)∈A]=13/160
marginaldistribution
p(x,y):thejointprobabilitydistributionofthediscreterandomvariablesXandY
theprobabilitydistributionpX(x)ofXaloneisobtainedbysummingp(x,y)overthevaluesofY.
Similarly,theprobabilitydistributionpY(y)ofYaloneisobtainedbysummingp(x,y)overthevaluesofX.
pX(x)andpY(y):marginaldistributionsofXandY
WhenXandYarecontinuousrandomvariables,summationsarereplacedbyintegrals.
Definition3.10ThemarginaldistributionofXaloneandofYaloneare
Example3.10ShowthatthecolumnandrowtotalsofTable
3.1givethemarginaldistributionofXaloneandofYalone.
Example3.11Findmarginalprobabilitydensityfunctions
fX(x)andfy(y)forthejointdensityfunctionofExample3.9.
ThemarginaldistributionpX(x)[orfX(x)]andpx(y)[orfy(y)]areindeedtheprobabilitydistributionoftheindividualvariableXandY,respectively.
Howtoverify?
TheconditionsofDefinition3.4[orDefinition3.6]aresatisfied.
Conditionaldistribution
recallthedefinitionofconditionalprobability:
XandYarediscreterandomvariables,wehave
Thevaluexoftherandomvariablerepresentaneventthatisasubsetofthesamplespace.
Definition3.11
LetXandYbetwodiscreterandomvariables.TheconditionalprobabilitymassfunctionoftherandomvariableY,giventhatX=x,is
Similarly,theconditionalprobabilitymassfunctionoftherandomvariableX,giventhatY=y,is
Definition3.11'
LetXandYbetwocontinuousrandomvariables.TheconditionalprobabilitydensityfunctionoftherandomvariableY,giventhatX=x,is
Similarly,theconditionalprobabilitydensityfunctionoftherandomvariableX,giventhatY=y,is
Remark:
Thefunctionf(x,y)/fX(x)isstrictlyafunctionofywithxfixed,thefunctionf(x,y)/fy(y)isstrictlyafunctionofxwithyfixed,bothsatisfyalltheconditionsofaprobabilitydistribution.
HowtofindtheprobabilitythattherandomvariableXfallsbetweenaandbwhenitisknownthatY=y
Example3.12ReferringtoExample3.8,findtheconditionaldistributionofX,giventhatY=1,anduseittodetermine
P(X=0|Y=1).
Example3.13Thejointdensityfortherandomvariables(X,Y)whereXistheunittemperaturechangeandYistheproportionofspectrumshiftthatacertainatomicparticleproducesis
FindthemarginaldensitiesfX(x),fy(y),andtheconditionaldensityfYX(y|x)
(b)Findtheprobabilitythatthespectrumshiftsmorethanhalfofthetotalobservations,giventhetemperatureisincreasedto0.25unit.
(a)
(b)
Example3.14Giventhejointdensityfunction
(a)
(b)
statisticalindependence
eventsAandBareindependent,if
P(B∩A)=P(A)P(B).
discreterandomvariablesXandYareindependent,if
P(X=x,Y=y)=P(X=x)P(Y=y)
forall(x,y)withintheirrange.
Thevaluexoftherandomvariablerepresentaneventthatisasubsetofthesamplespace.
Definition3.12LetXandYbetwodiscreterandomvariables,withjointprobabilitydistributionp(x,y)andmarginaldistributionspX(x)andpY(y),respectively.TherandomvariablesXandYaresaidtobestatisticallyindependentifandonlyif
p(x,y)=pX(x)pY(y)forall(x,y)withintheirrange.
Definition3.12'LetXandYbetwocontinuousrandomvariables,withjointprobabilitydistributionf(x,y)andmarginaldistributionsfX(x)andfY(y),respectively.TherandomvariablesXan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 剧院装饰监理协议样本
- 跨境电商小包倒运协议
- 设备采购居间服务承诺书
- 咨询服务居间介绍合同范本
- 桃木双十一活动策划方案
- 湖北文理学院《档案管理信息系统》2023-2024学年第一学期期末试卷
- 湖北幼儿师范高等专科学校《俄语阅读》2023-2024学年第一学期期末试卷
- 2025年度航空航天设备采购合同范本3篇
- 2025年投标采购心得体会总结与合同风险评估合同3篇
- 2025年建筑项目工程咨询合同6篇
- 上海纽约大学自主招生面试试题综合素质答案技巧
- 办公家具项目实施方案、供货方案
- 2022年物流服务师职业技能竞赛理论题库(含答案)
- 危化品安全操作规程
- 连锁遗传和遗传作图
- DB63∕T 1885-2020 青海省城镇老旧小区综合改造技术规程
- 高边坡施工危险源辨识及分析
- 中海地产设计管理程序
- 简谱视唱15942
- 《城镇燃气设施运行、维护和抢修安全技术规程》(CJJ51-2006)
- 项目付款审核流程(visio流程图)
评论
0/150
提交评论