2025届河南省新乡七中九年级数学第一学期期末检测试题含解析_第1页
2025届河南省新乡七中九年级数学第一学期期末检测试题含解析_第2页
2025届河南省新乡七中九年级数学第一学期期末检测试题含解析_第3页
2025届河南省新乡七中九年级数学第一学期期末检测试题含解析_第4页
2025届河南省新乡七中九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省新乡七中九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若,则下列等式一定成立的是()A. B. C. D.2.二次函数(m是常数),当时,,则m的取值范围为()A.m<0 B.m<1 C.0<m<1 D.m>13.一个盒子装有红、黄、白球分别为2、3、5个,这些球除颜色外都相同,从袋中任抽一个球,则抽到黄球的概率是()A. B. C. D.4.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π5.反比例函数与正比例函数在同一坐标系中的大致图象可能是()A. B.C. D.6.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.7.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃8.已知抛物线y=﹣x2+bx+4经过(﹣2,﹣4),则b的值为()A.﹣2 B.﹣4 C.2 D.49.如图,在中,若,则的长是()A. B. C. D.10.在一个不透明的布袋中装有红色.白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有().A.34个 B.30个 C.10个 D.6个11.关于x的一元二次方程(2x-1)2+n2+1=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判定12.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是()A.③②①④ B.②④①③ C.③①④② D.②③④①二、填空题(每题4分,共24分)13.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.14.如图,直线,等腰直角三角形的三个顶点分别在,,上,90°,交于点,已知与的距离为2,与的距离为3,则的长为________.15.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.16.如图,五边形是正五边形,若,则__________.17.不等式组x-2>0①2x-6>2②的解是________18.若,,是反比例函数图象上的点,且,则、、的大小关系是__________.三、解答题(共78分)19.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?20.(8分)如图,反比例函数y1=与一次函数y2=ax+b的图象交于点A(﹣2,5)和点B(n,l).(1)求反比例函数和一次函数的表达式;(2)请结合图象直接写出当y1≥y2时自变量x的取值范围;(3)点P是y轴上的一个动点,若S△APB=8,求点P的坐标.21.(8分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.22.(10分)如图,某数学兴趣小组为测量一棵古树BH和教学楼的高,先在点处用高1.5米的测角仪测得古树顶端点的仰角为,此时教学楼顶端点恰好在视线上,再向前走7米到达点处,又测得教学楼顶端点的仰角为,点、、点在同一水平线上.(1)计算古树的高度;(2)计算教学楼的高度.(结果精确到0.1米,参考数据:,).23.(10分)用适当的方法解方程:(1)(2).24.(10分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD.(1)求证:△ACB≌△BED;(2)△BCD的面积为(用含m的式子表示).拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为;若BC=m,则△BCD的面积为(用含m的式子表示).25.(12分)如图,抛物线与轴交于点,,与轴交于点.(1)求点,,的坐标;(2)将绕的中点旋转,得到.①求点的坐标;②判断的形状,并说明理由.(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.26.取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据比例的性质,则ad=bc,逐个判断可得答案.【详解】解:由可得:2x=3yA.,此选项不符合题意B.,此选项不符合题意C.,则3x=2y,此选项不符合题意D.,则2x=3y,正确故选:D【点睛】本题考查比例的性质,解题关键在于掌握,则ad=bc.2、D【分析】根据二次函数的性质得出关于m的不等式,求出不等式的解集即可.【详解】∵二次函数,∴图像开口向上,与x轴的交点坐标为(1,0),(m-1,0),∵当时,,∴m-1>0,∴m>1.故选D.【点睛】本题考查了二次函数的性质和图象和解一元一次不等式,能熟记二次函数的性质是解此题的关键.3、D【分析】用黄球的个数除以球的总数即为摸到黄球的概率.【详解】∵布袋中装有红、黄、白球分别为2、3、5个,共10个球,从袋中任意摸出一个球共有10种结果,其中出现黄球的情况有3种可能,∴得到黄球的概率是:.故选:D.【点睛】本题考查随机事件概率的求法:如果一个事件有m种可能,而且这些事件的可能性相同,其中事件A出现n种结果,那么事件A的概率P(A)=.4、B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【详解】在实数|-3|,-1,0,π中,|-3|=3,则-1<0<|-3|<π,故最小的数是:-1.故选B.【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.5、A【分析】分a>0和a<0两种情况,根据反比例函数与正比例函数的图象的性质判断即可.【详解】解:当a>0时,反比例函数图象在一、三象限,正比例函数图象经过一、二、三象限;当a<0,反比例函数图象在二、四象限,正比例函数图象经过二、三、四象限.故选:A.【点睛】本题考查的知识点是反比例函数与正比例函数图象的性质,熟记性质内容是解此题的关键.6、D【解析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.7、C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A、抛一枚硬币,出现正面朝上的频率是=0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:==0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是=≈0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是=0.25,故本选项错误;故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.8、C【分析】将点的坐标代入抛物线的解析式求解即可.【详解】因为抛物线y=﹣x1+bx+4经过(﹣1,﹣4),所以﹣4=﹣(﹣1)1﹣1b+4,解得:b=1.故选:C.【点睛】本题主要考查的是二次函数的性质.解题的关键是掌握二次函数的性质,明确抛物线经过的点的坐标满足抛物线的解析式是解题的关键.9、B【分析】根据平行线分线段成比例定理,先算出,可得,根据DE的长即可求得BC的长.【详解】解:∵,∴,∵,∴,∵,∴.【点睛】本题考查了平行线分线段成比例定理,由题意求得是解题的关键.10、D【解析】由频数=数据总数×频率计算即可.【详解】解:∵摸到白色球的频率稳定在85%左右,∴口袋中白色球的频率为85%,故白球的个数为40×85%=34个,∴口袋中红色球的个数为40-34=6个故选D.【点睛】本题考查了利用频率估计概率,难度适中.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率来估计概率,这个固定的近似值就是这个事件的概率.11、C【分析】先对原方程进行变形,然后进行判定即可.【详解】解:由原方程可以化为:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程没有实数根.故答案为C.【点睛】本题考查了一元二次方程的解,解题的关键在于对方程的变形,而不是运用根的判别式.12、B【分析】根据相似三角形的判定定理,即可得到答案.【详解】∵DE∥BC,∴∠B=∠ADE,∵DF∥AC,∴∠A=∠BDF,∴∆ADE~∆DBF.故选:B.【点睛】本题主要考查三角形相似的判定定理,掌握“有两个角对应相等的两个三角形相似”是解题的关键.二、填空题(每题4分,共24分)13、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PE⊥AB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2cm,求出⊙P移动的距离为4-2-1=1cm,由此得到⊙P运动时间;当点P在射线OB上时,过点P作PF⊥AB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PE⊥AB于点E,则PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移动的距离为4-2-1=1cm,∴运动时间为s;当点P在射线OB上时,如图,过点P作PF⊥AB于点F,则PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移动的距离为4+2-1=5cm,∴运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.14、【分析】作AF⊥,BE⊥,证明△ACF≌△CBE,求出CE,根据勾股定理求出BC、AC,作DH⊥,根据DH∥AF证明△CDH∽△CAF,求出CD,再根据勾股定理求出BD.【详解】如图,作AF⊥,BE⊥,则∠AFC=BEC=90°,由题意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案为:.【点睛】此题考查等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线间的距离处处相等的性质,正确引出辅助线解决问题是解题的关键.15、【解析】∵点P的坐标为(3,4),∴OP=,∴.故答案为:.16、72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.17、x>4【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18、【分析】根据“反比例函数”可知k=3,可知该函数图像过第一、三象限,在第一象限,y随x的增大而减小且y>0,在第三象限,y随x的增大而减小且y<0,据此进行排序即可.【详解】由题意可知该函数图像过第一、三象限,在第一象限,y随x的增大而减小且y>0,在第三象限,y随x的增大而减小且y<0,因为所以所以故答案填.【点睛】本题考查的是反比例函数的性质,能够熟练掌握反比例函数的性质是解题的关键.三、解答题(共78分)19、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根据题意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.20、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)点P的坐标为(0,4)或(0,1).【分析】(1)先把A点坐标代入y=中求出k得到反比例函数解析式为y=﹣,再利用反比例函数解析式确定B(﹣10,1),然后利用待定系数法求一次解析式;(2)根据图象即可求得;(3)设一次函数图象与y轴的交点为Q,易得Q(0,6),设P(0,m),利用三角形面积公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到点P的坐标.【详解】解:(1)把A(﹣2,5)代入反比例函数y1=得k=﹣2×5=﹣10,∴反比例函数解析式为y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,则B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+b得,解得,∴一次函数解析式为y2=x+6;(2)由图象可知,y1≥y2时自变量x的取值范围是x≤﹣10或﹣2≤x<0;(3)设y=x+6与y轴的交点为Q,易得Q(0,6),设P(0,m),∴S△APB=S△BPQ﹣S△APQ=1,|m﹣6|×(10﹣2)=1,解得m1=4,m2=1.∴点P的坐标为(0,4)或(0,1).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.21、(1)y=4x1﹣14x+144;(1)111mm1.【分析】(1)用x表示PB和BQ.利用两个直角三角形的面积差求得答案即可;(1)求出x=1时,y的值即可得.【详解】解:(1)∵运动时间为x,点P的速度为1mm/s,点Q的速度为4mm/s,∴PB=11﹣1x,BQ=4x,∴y=.(1)当x=1时,y=4×11﹣14×1+144=111,即当x=1时,四边形APQC的面积为111mm1.【点睛】本题考查了几何动点与二次函数的问题,解题的关键是根据动点的运动表示出函数关系式.22、(1)8.5米;(2)18.0米【分析】(1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的长度,进而可计算古树的高度;(2)作HJ⊥CG于G,设HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函数值求出x的值,进而求出GF,最后利用CG=CF+FG即可得出答案.【详解】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH的高度为8.5米.(2)作HJ⊥CG于G.则△HJG是等腰直角三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△EFG中,tan60°=,∴,∴GF=≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.23、(1);;(2)=,=1.【分析】(1)用公式法求解;(2)用因式分解法求解.【详解】解:(1)a=2,b=3,c=-5,△=32-1×2×(-5)=19>0,所以x1===1,x1===;(2)[(x+3)+(1-2x)][(x+3)-(1-2x)]=0(-x+1)(3x+2)=0所以3x+2=0或-x+1=0,解得x1=,x2=1.【点睛】本题考查了一元二次方程的解法,根据方程的特点选择适当的方法是解决此题的关键.24、感知:(1)详见解析;(1)m1;拓展:m1,理由详见解析;应用:16,m1.【解析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED;(1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积;拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积;应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论.【详解】感知:证明:(1)∵△ABC是等腰直角三角形,∴CA=CB=m,∠A=∠ABC=25°,由旋转的性质可知,BA=BD,∠ABD=90°,∴∠DBE=25°,在△ACB和△DEB中,,∴△ACB≌△BED(AAS)(1)∵△ACB≌△BED∴DE=BC=m∴S△BCD=BC×ED=m1,故答案为m1,拓展:作DG⊥CB交CB的延长线于G,∵∠ABD=90°,∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°,∴∠A=∠DBG,在△ACB和△BGD中,,∴△ACB≌△BGD(AAS),∴BC=DG=m∴S△BCD=BC×DG=m1,应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M,∴∠ANB=∠M=90°,BN=BC=2.∴∠NAB+∠ABN=90°.∵∠ABD=90°,∴∠ABN+∠DBM=90°,∴∠NAB=∠MBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△ANB≌△BMD(AAS),∴BN=DM=BC=2.∴S△BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论