2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题含解析_第1页
2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题含解析_第2页
2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题含解析_第3页
2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题含解析_第4页
2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市渝北中学九年级数学第一学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知关于x的函数y=k(x+1)和y=﹣(k≠0)它们在同一坐标系中的大致图象是()A. B.C. D.2.如图,点在以为直径的上,若,,则的长为()A.8 B.6 C.5 D.3.下列品牌的运动鞋标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+=4 D.x2=3x﹣25.下列函数中,是反比例函数的是()A. B. C. D.6.若我们把十位上的数字比个位和百位上数字都小的三位数,称为“”或,如,,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“”数的槪率为()A. B. C. D.7.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为().A. B. C. D.8.计算的值是()A. B. C. D.9.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.10.老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有丁 B.乙和丁 C.乙和丙 D.甲和丁二、填空题(每小题3分,共24分)11.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是_______.12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.13.已知线段a=4,b=9,则a,b的比例中项线段长等于________.14.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.15.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=4,CD=3,则⊙O的半径的长是______.16.如图,在△ABC中,AB≠AC.D,E分别为边AB,AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件:______,可以使得△FDB与△ADE相似.(只需写出一个)

17.如图所示,某河堤的横断面是梯形,,迎水坡长26米,且斜坡的坡度为,则河堤的高为米.18.当﹣1≤x≤3时,二次函数y=﹣(x﹣m)2+m2﹣1可取到的最大值为3,则m=_____.三、解答题(共66分)19.(10分)如图,点在以为直径的上,的平分线交于点,过点作的平行线交的延长线于点.(1)求证:是的切线;(2)若,,求的长度.20.(6分)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.21.(6分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.22.(8分)先化简,再求值:(1+),其中,x=﹣1.23.(8分)某批发商以50元/千克的成本价购入了某产品800千克,他随时都能一次性卖出这种产品,但考虑到在不同的日期市场售价都不一样,为了能把握好最恰当的销售时机,该批发商查阅了上年度同期的经销数据,发现:①如果将这批产品保存5天时卖出,销售价为80元;②如果将这批产品保存10天时卖出,销售价为90元;③该产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系;④这种产品平均每天将损耗10千克,且最多保存15天;⑤每天保存产品的费用为100元.根据上述信息,请你帮该批发商确定在哪一天一次性卖出这批产品能获取最大利润,并求出这个最大利润.24.(8分)如图,已知一次函数分别交x、y轴于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一交点为C.(1)求b、c的值及点C的坐标;(2)动点P从点O出发,以每秒1个单位长度的速度向点A运动,过P作x轴的垂线交抛物线于点D,交线段AB于点E.设运动时间为t(t>0)秒.①当t为何值时,线段DE长度最大,最大值是多少?(如图1)②过点D作DF⊥AB,垂足为F,连结BD,若△BOC与△BDF相似,求t的值.(如图2)25.(10分)如图,点F为正方形ABCD内一点,△BFC绕点B逆时针旋转后与△BEA重合(1)求△BEF的形状(2)若∠BFC=90°,说明AE∥BF26.(10分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,把△ABD、△ACD分别以AB、AC为对称轴翻折变换,D点的对称点为E、F,延长EB、FC相交于G点.(1)求证:四边形AEGF是正方形;(2)求AD的长.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先根据反比例函数的性质判断出k的取值,再根据一次函数的性质判断出k取值,二者一致的即为正确答案.【详解】解:当k>0时,反比例函数的系数﹣k<0,反比例函数过二、四象限,一次函数过一、二、三象限,原题没有满足的图形;当k<0时,反比例函数的系数﹣k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限.故选:A.2、D【分析】根据直径所对圆周角是直角,可知∠C=90°,再利用30°直角三角形的特殊性质解出即可.【详解】∵AB是直径,∴∠C=90°,∵∠A=30°,∴,.故选D.【点睛】本题考查圆周角的性质及特殊直角三角形,关键在于熟记相关基础知识.3、D【分析】根据轴对称图形和中心对称图形的定义即可得出答案.【详解】A是轴对称图形,但不是中心对称图形,故此选项不符合题意;B不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意.故选D.【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、D【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.5、B【解析】根据反比例函数的一般形式即可判断.【详解】A、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;B、是一次函数,正确;C、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;D、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误.故选:B.【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx−1(k≠0)的形式.6、C【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.【详解】解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,即324,423,

故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为,

故选:C.【点睛】本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.7、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【详解】∵Rt△OAB的顶点A(−2,4)在抛物线上,∴4=4a,解得a=1,∴抛物线为,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入,得,解得∴P故答案为:.【点睛】考查二次函数图象上点的坐标特征,坐标与图形变化-旋转,掌握旋转的性质是解题的关键.8、A【解析】先算cos60°=,再计算即可.【详解】∵∴故答案选A.【点睛】本题考查特殊角的三角函数值,能够准确记忆60°角的余弦值是解题的关键.9、B【解析】根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故本选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故本选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故本选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故本选项错误.故选B.10、D【分析】观察每一项的变化,发现甲将老师给的式子中等式右边缩小两倍,到了丁处根据丙的式子得出了错误的顶点坐标.【详解】解:,可得顶点坐标为(-1,-6),根据题中过程可知从甲开始出错,按照此步骤下去到了丁处可得顶点应为(1,-3),所以错误的只有甲和丁.故选D.【点睛】本题考查了求二次函数的顶点坐标和配方法,解题的关键是掌握配方法化顶点式的方法.二、填空题(每小题3分,共24分)11、15个.【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解:由题意可得,,解得,a=15(个).12、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.13、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,

∴,即,解得,(不合题意,舍去)

故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.14、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,

∴k>1.

故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.15、2.5【分析】连接AC,根据∠ABC=90°可知AC是⊙O的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC的长,进而得出结论.【详解】解:如图,连接AC,∵∠ABC=90°,

∴AC是⊙O的直径,

∴∠D=90°,

∵AD=4,CD=3,

∴AC=5,∴⊙O的半径=2.5,故答案为:2.5.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.16、或【解析】因为,,,所以,欲使与相似,只需要与相似即可,则可以添加的条件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理与,无从下手,没有公共边或者公共角,稍作转化,通过,与相似.这时,柳暗花明,迎刃而解.17、24【解析】试题分析:因为斜坡的坡度为,所以BE:AE=,设BE=12x,则AE=5x;在Rt△ABE中,由勾股定理知:即:解得:x=2或-2(负值舍去);所以BE=12x=24(米).考点:解直角三角形的应用.18、﹣1.5或1.【分析】根据题意和二次函数的性质,利用分类讨论的方法可以求得m的值.【详解】∵当﹣1≤x≤3时,二次函数y=﹣(x﹣m)1+m1﹣1可取到的最大值为3,∴当m≤﹣1时,x=﹣1时,函数取得最大值,即3=﹣(﹣1﹣m)1+m1﹣1,得m=﹣1.5;当﹣1<m<3时,x=m时,函数取得最大值,即3=m1﹣1,得m1=1,m1=﹣1(舍去);当m≥3时,x=3时,函数取得最大值,即3=﹣(3﹣m)1+m1﹣1,得m=(舍去);由上可得,m的值为﹣1.5或1,故答案为:﹣1.5或1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质,分类讨论是解题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)连接OD,由为的直径得到∠ACB=90,根据CD平分∠ACB及圆周角定理得到∠AOD=90,再根据DE∥AB推出OD⊥DE,即可得到是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面积法求出CH,求出OH,根据△CHM∽△DOM求出HM得到AM,再利用平行线证明△CAM∽△CED,即可求出DE.【详解】(1)如图,连接OD,∵为的直径,∴∠ACB=90,∵CD平分∠ACB,∴∠ACD=45,∴∠AOD=90,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴是的切线;(2)过点C作CH⊥AB于H,CD交AB于M,∵∠ACB=90,,,∴AB=,∵S△ABC=,∴CH=,∴AH=,∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90,∠HMC=∠DMO,∴△CHM∽△DOM,∴∴=,,∴HM=,∴AM=AH+HM=,∵AB∥DE,∴△CAM∽△CED,∴,∴DE=.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE的长度,根据此思路相应的添加辅助线进行证明.20、(1)证明见解析;(2)CD=【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B为AF的中点,∴BF=AB,∴设CD=BF=x,∵△CDE∽△CBF,∴,∴,∵x>0,∴x=,即:CD=.【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质21、(2);(2)t=2或2;(3)().【分析】(2)由等边三角形OAB得出∠ABC=92°,进而得出CO=OB=AB=OA=3,AC=6,求出BC即可;(2)需要分类讨论:△PHQ∽△ABC和△QHP∽△ABC两种情况;(3)过点Q作QN∥OB交x轴于点N,得出△AQN为等边三角形,由OE∥QN,得出△POE∽△PNQ,以及,表示出OE的长,利用m=BE=OB﹣OE求出即可.【详解】(2)如图l,∵△AOB为等边三角形,∴∠BAC=∠AOB=62,∵BC⊥AB,∴∠ABC=92°,∴∠ACB=32°,∠OBC=32°,∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin62°=.需要分类讨论:当△PHQ∽△ABC时,,即:,解得,t=2.同理,当△QHP∽△ABC时,t=2.综上所述,t=2或t=2;(3)如图2,过点Q作QN∥OB交x轴于点N,∴∠QNA=∠BOA=62°=∠QAN,∴QN=QA,∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN,∴△POE∽△PNQ,∴,∴,∴,∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=32°,∴EF=BE,∴m=BE=OB﹣OE=(2<t<3).考点:相似形综合题.22、,1﹣【分析】根据分式混合运算的运算顺序及运算法则进行化简,再把x的值代入计算即可.【详解】解:原式,当时,原式.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式通分和分式加减乘除运算法则.23、保存15天时一次性卖出能获取最大利润,最大利润为23500元【分析】根据题意求出产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系y=2x+1,根据利润=售价×销售量-保管费-成本,可利用配方法求出最大利润.【详解】解:由题意可求得y=2x+1.设保存x天时一次性卖出这批产品所获得的利润为w元,则w=(800-10x)(2x+1)-100x-50×800=-20x2+800x+16000=-20(x-20)2+24000∵0<x≤15,∴x=15时,w最大=23500答:保存15天时一次性卖出能获取最大利润,最大利润为23500元.【点睛】此题主要考查了二次函数在实际生活中的应用,熟练掌握将实际生活中的问题转化为二次函数是解题的关键.24、(1)b=2,c=3,C点坐标为(-1,0);(2)①;②【分析】(1)由一次函数求出点A、B坐标,代入抛物线解析式可求出b、c的值,令y=0可求出点C的坐标;(2)①由题意可知P(t,0),D(t,)、E(t,-t+3),然后表示出DE,利用二次函数的最值即可求出DE最大值;②分别用t表示出AP、EP、AE、DE、EF、BF,然后分类讨论相似的两种情况,或,列式求解即可.【详解】解:(1)在中令x=0,得y=3,令y=0,得x=3,∴A(3,0),B(0,3),把A(3,0),B(0,3)代入y=﹣x2+bx+c中,得:,解得,∴抛物线的解析式为y=﹣x2+2x+3,令y=0则0=﹣x2+2x+3,解得,∴C点坐标为(-1,0);(2)①由题知P(t,0),D(t,)、E(t,-t+3);∴DE=()-()∴当时,DE长度最大,最大值为;②∴A(3,0),B(0,3),∴OA=OB,∴∠BAO=45°,在Rt△PAE中,∠PAE=45°,;在Rt△DEF中,∠DEF=45°,;∴若△BDF∽△CBO相似,则,即:,解得:(舍去);,若△BDF∽△BCO相似,则,即:,解得:(舍去);,;综上,或时,△BOC与△BDF相似.【点睛】本题是二次函数压轴题,着重考查了分类讨论的数学思想,考查了二次函数的图象与性质、三角形相似、一次函数、解方程等知识点,难度较大.最后一问为探索题型,注意进行分类讨论.25、(1)等腰直角三角形(2)见解析【分析】(1)利用正方形的性质得BA=BC,∠ABC=90°,然后根据旋转的定义可判断旋转中心为点B,旋转角为90°,根据旋转的性质得∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论