![2025届天津市蓟州区第三联合区数学九上期末联考试题含解析_第1页](http://file4.renrendoc.com/view14/M06/13/2C/wKhkGWaMGpuAMGJyAAHp0zDoS10618.jpg)
![2025届天津市蓟州区第三联合区数学九上期末联考试题含解析_第2页](http://file4.renrendoc.com/view14/M06/13/2C/wKhkGWaMGpuAMGJyAAHp0zDoS106182.jpg)
![2025届天津市蓟州区第三联合区数学九上期末联考试题含解析_第3页](http://file4.renrendoc.com/view14/M06/13/2C/wKhkGWaMGpuAMGJyAAHp0zDoS106183.jpg)
![2025届天津市蓟州区第三联合区数学九上期末联考试题含解析_第4页](http://file4.renrendoc.com/view14/M06/13/2C/wKhkGWaMGpuAMGJyAAHp0zDoS106184.jpg)
![2025届天津市蓟州区第三联合区数学九上期末联考试题含解析_第5页](http://file4.renrendoc.com/view14/M06/13/2C/wKhkGWaMGpuAMGJyAAHp0zDoS106185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届天津市蓟州区第三联合区数学九上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则cosA的值为()A. B. C. D.2.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是()A.①②④ B.①③④ C.②③④ D.①③3.如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC的中点,则cos∠OMN的值为()A. B. C. D.14.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率5.在中,∠C=90°,∠A=2∠B,则的值是()A. B. C. D.6.如图,在平面直角坐标系中,点,将沿轴向右平移得,此时四边形是菱形,则点的坐标是()A. B. C. D.7.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d8.下列四个函数中,y的值随着x值的增大而减小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)9.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位10.已知、是一元二次方程的两个实数根,则的值为()A.-1 B.0 C.1 D.2二、填空题(每小题3分,共24分)11.在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是(结果保留π).12.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.13.如图,点是反比例函数的图象上一点,直线过点与轴交于点,与轴交于点.过点做轴于点,连接,若的面积为,则的面积为_______.14.如图,,,与交于点,则是相似三角形共有__________对.15.若二次函数的对称轴为直线,则关于的方程的解为______.16.抛物线在对称轴_____(填“左侧”或“右侧”)的部分是下降的.17.如图,已知等边的边长为,顶点在轴正半轴上,将折叠,使点落在轴上的点处,折痕为.当是直角三角形时,点的坐标为__________.18.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.三、解答题(共66分)19.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.20.(6分)计算:.21.(6分)用配方法解一元二次方程22.(8分)如图,是半径为1的的内接正十边形,平分(1)求证:;(2)求证:23.(8分)已知,如图,在Rt△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF,当点D在线段BC的反向延长线上,且点A,F分别在直线BC的两侧时.(1)求证:△ABD≌△ACF;(2)若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC,求OC的长度.24.(8分)如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.(1)求的长.(2)若点是线段的中点,求的值.(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?25.(10分)如图,已知是的外接圆,是的直径,为外一点,平分,且.(1)求证:;(2)求证:与相切.26.(10分)甲口袋中装有3个小球,分别标有号码1,2,3;乙口袋中装有2个小球,分别标有号码1,2;这些球除数字外完全相同.从甲、乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率是多少?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据已知条件,运用勾股定理的逆定理可得该三角形为直角三角形,再根据余弦的定义解答即可.【详解】解:设分别为,,为直角三角形,.【点睛】本题主要考查了勾股定理的逆定理和余弦,熟练掌握对应知识点是解答关键.2、B【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.
②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.
③正确.设BC=BE=EC=a,求出AC,BD即可判断.
④正确.求出BF,OF,DF(用a表示),通过计算证明即可.【详解】解:∵四边形ABCD是平行四边形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等边三角形,
∴EB=BC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,
∵OA=OC,EA=EB,
∴OE∥BC,
∴∠AOE=∠ACB=90°,
∴EO⊥AC,故①正确,
∵OE∥BC,
∴△OEF∽△BCF,
∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故②错误,
设BC=BE=EC=a,则AB=2a,AC=a,OD=OB=a,
∴BD=a,
∴AC:BD=a:a=:7,故③正确,
∵OF=OB=a,
∴BF=a,
∴BF2=a2,OF•DF=a•a2,
∴BF2=OF•DF,故④正确,
故选:B.【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.3、B【详解】∵正方形对角线相等且互相垂直平分∴△OBC是等腰直角三角形,∵点M,N分别为OB,OC的中点,∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=4、D【详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.5、C【分析】根据三角形内角和定理求出∠A的值,运用特殊角的三角函数值计算即可.【详解】∵∠A+∠B+∠C=180°,∠A=2∠B,∠C=90°,
∴2∠B+∠B+90°=180°,∴∠B=30°,∴∠A=60°,∴.故选:C.【点睛】本题考查了三角形内角和定理的应用以及特殊角的三角函数值,准确掌握特殊角的三角函数值是解题关键.6、A【分析】首先由平移的性质,得出点C的纵坐标,OA=DE=3,AD=OE,然后根据勾股定理得出CD,再由菱形的性质得出点C的横坐标,即可得解.【详解】由已知,得点C的纵坐标为4,OA=DE=3,AD=OE∴∵四边形是菱形∴AD=BC=CD=5∴点C的横坐标为5∴点C的坐标为故答案为A.【点睛】此题主要考查平面直角坐标系中,根据平移和菱形的性质求解点坐标,熟练掌握,即可解题.7、A【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、c:a=d:b⇒bc=ad,故错误D、b:c=a:d⇒ad=bc,故错误.故选A.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.8、C【分析】根据一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A、y=2x,正比例函数,k>0,故y随着x增大而增大,错误;B、y=x+1,一次函数,k>0,故y随着x增大而增大,错误;C、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,正确;D、y=x2,当x>0时,图象在对称轴右侧,y随着x的增大而增大,错误.故选C.【点睛】本题考查二次函数的性质;一次函数的性质;反比例函数的性质.9、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.10、C【分析】根据根与系数的关系即可求出的值.【详解】解:∵、是一元二次方程的两个实数根∴故选C.【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=是解决此题的关键.二、填空题(每小题3分,共24分)11、.【解析】试题分析:将△ABC绕点B旋转60°,顶点C运动的路线长是就是以点B为圆心,BC为半径所旋转的弧,根据弧长公式即可求得.试题解析:∵AB=4,∴BC=2,所以弧长=.考点:1.弧长的计算;2.旋转的性质.12、y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13、【分析】先由△BOC的面积得出①,再判断出△BOC∽△ADC,得出②,联立①②求出,即可得出结论.【详解】设点A的坐标为,
∴,
∵直线过点A并且与两坐标轴分别交于点B,C,
∴,∴,,
∵△BOC的面积是3,
∴,
∴,
∴①
∵AD⊥x轴,
∴OB∥AD,
∴△BOC∽△ADC,
∴,
∴,
∴②,
联立①②解得,(舍)或,
∴.故答案为:.【点睛】本题是反比例函数与几何的综合题,主要考查了坐标轴上点的特点,反比例函数上点的特点,相似三角形的判定和性质,得出是解本题的关键.14、6【分析】图中三角形有:△AEG,△ADC,△CFG,△CBA,因为,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中组合,据此可得出答案.【详解】图中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6个组合分别为:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.15、,【分析】根据对称轴方程求得b,再代入解一元二次方程即可.【详解】解:∵二次函数y=x2+bx-5的对称轴为直线x=1,∴=1,即b=-2∴解得:,故答案为,.【点睛】本题主要考查的是抛物线与x轴的交点、一元二次方程等知识,根据抛物线的对称轴确定b的值是解答本题的关键.16、右侧【解析】根据二次函数的性质解题.【详解】解:∵a=-1<0,
∴抛物线开口向下,顶点是抛物线的最高点,抛物线在对称轴右侧的部分是下降的,
故答案为:右侧.点睛:本题考查了二次函数的性质,熟练掌握性质上解题的关键.17、,【解析】当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=,由此可求出OA′的长,也就能求出A′E的长,据此可求出A′的坐标;当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,根据三角函数的关系列出方程即可求解x,从而求出A’的坐标.【详解】当A′E∥x轴时,△OA′E是直角三角形,故∠A′OE=60°,A′E=AE,设A′的坐标为(0,b),∴AE=A′E=A’Otan60°=b,OE=2b,b+2b=2+,∴b=1,A′的坐标是(0,1);当∠A’EO=90°时,△A′EO是直角三角形,设OE=x,则AE=A’E=-x,∵∠AOB=60°,∴A’E=OEtan60°=x=-x解得x=∴A’O=2OE=∴A’(0,)综上,A’的坐标为,.【点睛】此题主要考查图形与坐标,解题的关键是熟知等边三角形的性质、三角函数的应用.18、x=﹣1【分析】根据一元二次方程的两根得出抛物线与x轴的交点,再利用二次函数的对称性可得答案.【详解】∵一元二次方程的两根为﹣5和3,∴二次函数图象与x轴的交点为(﹣5,0)和(3,0),由抛物线的对称性知抛物线的对称轴为,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴交点坐标与对应一元二次方程间的关系及抛物线的对称性.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)由OD⊥ACOD为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可证得BD平分∠ABC;(2)首先由OB=OD,易求得∠AOD的度数,又由OD⊥AC于E,可求得∠A的度数,然后由AB是⊙O的直径,根据圆周角定理,可得∠ACB=90°,继而可证得BC=OD.【详解】(1)∵OD⊥ACOD为半径,∴,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,又∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,BC=AB,∵OD=AB,∴BC=OD.20、1-.【解析】分别把各特殊角的三角函数值代入,再根据实数的运算法则进行计算.【详解】原式=4×-3×+2××=1-.【点睛】本题考查了特殊角的三角函数值.熟记特殊角的三角函数值是解题的关键.21、,【分析】根据配方法解一元二次方程的步骤,解方程即可.【详解】解:移项得x2﹣6x=7,配方得x2﹣6x+9=7+9,即,∴-3=±4,∴,.【点睛】本题考查了配方法解一元二次方程,正确配方是解题的关键:“当二次项系数为1时,方程两边同时加一次项系数一半的平方”.22、(1)详见解析;(2)详见解析【分析】(1)根据题意得出角相等得出△A1A2P∽△A1OA2,再根据相似三角形的性质即可得出答案;(2)设A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【详解】证明:(1)∵A1A2A3…A10是半径为1的⊙O的内接正十边形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P•OA1(2)设A1A2=x,则OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P•OA1∴,∴,解得,(负值舍去)∴,即【点睛】本题考查了正十边形的性质及相似三角形的判定及性质定理,能够根据正十边形的性质得出角的度数是解题的关键.23、(1)证明见解析;(1)【分析】(1)由题意易得AD=AF,∠DAF=90°,则有∠DAB=∠FAC,进而可证AB=AC,然后问题可证;(1)由(1)可得△ABD≌△ACF,则有∠ABD=∠ACF,进而可得∠ACF=135°,然后根据正方形的性质可求解.【详解】(1)证明:∵四边形ADEF为正方形,∴AD=AF,∠DAF=90°,又∵∠BAC=90°,∴∠DAB=∠FAC,∵∠ABC=45°,∠BAC=90°,∴∠ACB=45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(1)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF边长为,∴DF=4,∴OC=DF=×4=1.【点睛】本题主要考查正方形的性质及等腰直角三角形的性质,熟练掌握正方形的性质及等腰直角三角形的性质是解题的关键.24、(1);(2);(3)当或时,满足条件的点只有一个.【解析】(1)由角平分线定义得,在中,根据锐角三角函数正切定义即可求得长.(2)由题意易求得,,由全等三角形判定得,根据全等三角形性质得,根据相似三角形判定得,由相似三角形性质得,将代入即可求得答案.(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年涡轮减速电机项目可行性研究报告
- 秸秆基特殊润湿性材料的制备及性能研究
- 2025至2030年清照园酒项目投资价值分析报告
- 2025至2030年机械剥牛皮机项目投资价值分析报告
- S汽车零部件公司内饰件设计变更业务流程优化研究
- 2025至2030年多功能窗刷项目投资价值分析报告
- 胶原蛋白植入剂的制备及其在皮肤年轻化中的应用
- 2025年逍遥颗粒项目可行性研究报告
- 企业内部保密工作培训制度
- 公司外派劳务合同范本
- 高级农业经理人(三级)技能鉴定考试题及答案
- 灌砂法压实度自动计算表(华岩软件)
- 幼儿园2024年春季开学预案
- 鲁科版小学四年级下册综合实践活动教案(适合山东科学技术版教材)
- GB/T 44311-2024适老环境评估导则
- TSDLPA 0001-2024 研究型病房建设和配置标准
- 保护和传承中国传统文化遗产阅读题答案
- 【长安的荔枝中李善德的人物形象分析7800字(论文)】
- 劳动合同范本1997
- 《网络安全防护项目教程》课件第3篇 管理篇
- 广东省2024年普通高中学业水平合格性考试语文仿真模拟卷01(原卷版)
评论
0/150
提交评论