2025届河南省安阳市殷都区数学九上期末达标检测试题含解析_第1页
2025届河南省安阳市殷都区数学九上期末达标检测试题含解析_第2页
2025届河南省安阳市殷都区数学九上期末达标检测试题含解析_第3页
2025届河南省安阳市殷都区数学九上期末达标检测试题含解析_第4页
2025届河南省安阳市殷都区数学九上期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省安阳市殷都区数学九上期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,,则的值为()A. B. C. D.2.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形3.如图,已知△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AO:AD的值为()A.2:3 B.2:5 C.4:9 D.4:134.如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A. B. C. D.5.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.6.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若OA=2,则四边形CODE的周长为()A.4 B.6 C.8 D.107.如图,⊙O的半径为1,点O到直线的距离为2,点P是直线上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B. C.2 D.8.如果一个正多边形的内角和等于720°,那么这个正多边形的每一个外角等于()A.45° B.60° C.120° D.135°9.若一元二次方程的两根为和,则的值等于()A.1 B. C. D.10.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.如图,函数的图象与轴的一个交点坐标为(3,0),则另一交点的横坐标为()A.﹣4 B.﹣3 C.﹣2 D.﹣112.如图是某个几何体的三视图,则该几何体是(

)A.长方体 B.圆锥 C.圆柱 D.三棱柱二、填空题(每题4分,共24分)13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.14.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.15.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.16.关于的一元二次方程有实数根,则实数的取值范围是________.17.已知抛物线与轴的一个交点坐标为,则一元二次方程的根为______________.18.已知,⊙O的半径为6,若它的内接正n边形的边长为6,则n=_____.三、解答题(共78分)19.(8分)已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一个根.20.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.21.(8分)已知关于x的一元二次方程.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值.22.(10分)如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.23.(10分)解方程(1)(2)24.(10分)为了响应市政府号召,某校开展了“六城同创与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)本次随机调查的学生人数是______人;(2)请你补全条形统计图;(3)在扇形统计图中,“B”所在扇形的圆心角等于______度;(4)小明和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.25.(12分)解方程:(1)x2﹣3x+1=0;(2)(x+1)(x+2)=2x+1.26.定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.

参考答案一、选择题(每题4分,共48分)1、D【解析】根据相似三角形的判定和性质,即可得到答案.【详解】解:∵,∴∽,∴;故选:D.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.2、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.3、B【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质得到AB:DO═2:3,进而得出答案.【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,∴=,AC∥DF,∴==,∴=.故选:B.【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.4、B【分析】首先连接OC,由CE是切线,可得,由圆周角定理,可得,继而求得的度数,则可求得的值.【详解】解:连接OC,

是切线,

即,

,、分别是所对的圆心角、圆周角,

.故选:B.【点睛】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.根据切线的性质连半径是解题的关键.5、B【详解】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选B.考点:作图—复杂作图6、C【分析】首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.【详解】解:∵CE∥BD,DE∥AC,

∴四边形CODE是平行四边形,

∵四边形ABCD是矩形,

∴AC=BD,OA=OC=2,OB=OD,

∴OD=OC=2,

∴四边形CODE是菱形,

∴四边形CODE的周长为:4OC=4×2=1.

故选:C.【点睛】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.7、B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=1.

根据题意,在Rt△OPA中,AP==故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA最小时点P的位置是解题的关键,难度中等偏上.8、B【分析】先用多边形的内角和公式求这个正多边形的边数为n,再根据多边形外角和等于360°,可求得每个外角度数.【详解】解:设这个正多边形的边数为n,

∵一个正多边形的内角和为720°,

∴180°(n-2)=720°,

解得:n=6,

∴这个正多边形的每一个外角是:360°÷6=60°.

故选:B.【点睛】本题考查了多边形的内角和与外角和的知识.应用方程思想求边数是解题关键.9、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论.【详解】解:将变形为根据根与系数的关系:故选B.【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键.10、C【分析】根据轴对称图形和中心对称图形的定义,即可得出答案.【详解】A.不是轴对称图形,也不是中心对称图形;B.不是轴对称图形,也不是中心对称图形;C.是轴对称图形,也是中心对称图形;D.是轴对称图形,不是中心对称图形.故选:C.【点睛】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、D【分析】根据到函数对称轴距离相等的两个点所表示的函数值相等可求解.【详解】根据题意可得:函数的对称轴直线x=1,则函数图像与x轴的另一个交点坐标为(-1,0).故横坐标为-1,故选D考点:二次函数的性质12、B【分析】根据几何体的三视图,可判断出几何体.【详解】解:∵主视图和左视图是等腰三角形∴此几何体是锥体∵俯视图是圆形∴这个几何体是圆锥故选B.【点睛】此题主要考查了几何体的三视图,关键是利用主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.二、填空题(每题4分,共24分)13、1【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴,即,解得:AB==1(米).故答案为1.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14、1cm【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而求出AD,DE,AE的长,则EB′的长可求出.【详解】解:由旋转的性质可知:AC=AC',∵D为AC'的中点,∴AD=AC,∵ABCD是矩形,∴AD⊥CD,∴∠ACD=30°,∵AB∥CD,∴∠CAB=30°,∴∠C'AB'=∠CAB=30°,∴∠EAC=30°,∴∠DAE=30°,∵AB=CD=3cm,∴AD=cm,∴DE=1cm,∴AE=2cm,∵AB=AB'=3cm,∴EB'=3﹣2=1cm.故答案为:1cm.【点睛】此题考查了旋转的性质,含30度直角三角形的性质,解直角三角形,熟练掌握旋转的性质是解本题的关键.15、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.16、且【解析】根据根的判别式△≥0且二次项系数求解即可.【详解】由题意得,16-4≥0,且,解之得且.故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.17、,【分析】将x=2,y=1代入抛物线的解析式可得到c=−8a,然后将c=−8a代入方程,最后利用因式分解法求解即可.【详解】解:将x=2,y=1代入得:2a+2a+c=1.解得:c=−8a.将c=−8a代入方程得:∴.∴a(x−2)(x+2)=1.∴x1=2,x2=-2.【点睛】本题主要考查的是抛物线与x轴的交点,求得a与c的关系是解题的关键.18、1【分析】根据题意作出图形,得到Rt△ADO,利用三角函数值计算出sin∠AOD=,得出∠AOD=15°,通过圆周角360°计算即可得出结果.【详解】解:如图所示:连接AO,BO,过点O做OD⊥AB,∵⊙O的半径为6,它的内接正n边形的边长为6,∴AD=BD=3,∴sin∠AOD==,∴∠AOD=15°,∴∠AOB=90°,∴n==1.故答案为:1.【点睛】本题考查了圆内接正多边形的性质,垂径定理的应用,三角函数值的应用,掌握圆的性质内容是解题的关键.三、解答题(共78分)19、a=-3;另一个根为-1.【分析】根据一元二次方程的解的定义把x=3代入x2-2x+a=0可求出a的值,然后把a的值代入方程得到x2-2x-3=0,再利用因式分解法解方程即可得到方程的另一根.【详解】解:设方程的另一个根为m,则解得:∴方程的另一个根为∴a=-13=-3.【点睛】本题主要考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20、(1)y=x2﹣6x+5;(2)N(3,);(3)画图见解析,S△EMN=;(4)存在,满足条件的点P的坐标为(3,﹣)或(7,)或(﹣1,).【分析】(1)先确定出点B坐标,最后用待定系数法即可得出结论;(2)先判断出点N是直线BC与对称轴的交点,即可得出结论;(3)先求出点E坐标,最后用三角形面积公式计算即可得出结论;(4)设出点P坐标,分三种情况利用用平行四边形的两条对角线互相平分和中点坐标公式求解即可得出结论.【详解】解:(1)针对于直线y=﹣x+4,令y=0,则0=﹣x+4,∴x=5,∴B(5,0),∵M(3,﹣4)是抛物线的顶点,∴设抛物线的解析式为y=a(x﹣3)2﹣4,∵点B(5,0)在抛物线上,∴a(5﹣3)2﹣4=0,∴a=1,∴抛物线的解析式为y=(x﹣3)2﹣4=x2﹣6x+5;(2)由(1)知,抛物线的解析式为y=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,∵点A,B关于抛物线对称轴对称,∴直线y=﹣x+4与对称轴x=3的交点就是满足条件的点N,∴当x=3时,y=﹣×3+4=,∴N(3,);(3)∵点C是抛物线y=x2﹣6x+5与y轴的交点,∴C(0,5),∵点E与点C关于对称轴x=3对称,∴E(6,5),由(2)知,N(3,),∵M(3,﹣4),∴MN=﹣(﹣4)=,∴S△EMN=MN•|xE﹣xM|=××3=;(4)设P(m,n),∵A(1,0),B(5,0),N(3,),当AB为对角线时,AB与NP互相平分,∴(1+5)=(3+m),(0+0)=(+n),∴m=3,n=﹣,∴P(3,﹣);当BN为对角线时,(1+m)=((3+5),(0+n)=(0+),∴m=7,n=,∴P(7,);当AN为对角线时,(1+3)=(5+m),(0+)=(0+n),∴m=﹣1,n=,∴P(﹣1,),即:满足条件的点P的坐标为(3,﹣)或(7,)或(﹣1,).【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形面积公式,对称性,平行四边形的性质,用方程的思想解决问题是解本题的关键.21、(1)、证明过程见解析;(2)、±1.【分析】(1)、首先得出方程的根的判别式,然后利用配方法得出非负数,从而得出答案;(2)、根据公式法得出方程的解,然后根据解为整数得出k的值.【详解】(1)、△=(3k+1)2-4k×3=(3k-1)2∵(3k-1)2≥0∴△≥0,∴无论k取何值,方程总有两个实数根;(2)、kx2+(3k+1)x+3=0(k≠0)解得:x=,x1=,x2=3,所以二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标分别为和3,根据题意得为整数,所以整数k为±1.考点:二次函数的性质22、1【分析】由点A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.【详解】解:∵A(,3),AB∥x轴,点B在双曲线y=之上,∴B(1,3),∴AB=1﹣=,AD=3,∴S=AB•AD=×3=1.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据点的横(纵)坐标求出纵(横)坐标是关键.23、(1)x1=1x2=(2)x1=2x2=5【分析】(1)根据直接开平方法即可求解(2)根据因式分解法即可进行求解.【详解】解方程(1)3x+2=5或3x+2=-5x1=1x2=(2)(x-2)(x-5)=0x-2=0或x-5=0x1=2x2=524、(1)60;(2)见解析;(3)108;(4).【分析】(1)用A的人类除以A所占的百分比即可求得答案;(2)求出c的人数,补全统计图即可;(3)用360度乘以B所占的比例即可得;(4)画树状图得到所有等可能的情况数,找出符合条件的情况数,利用概率公式求解即可.【详解】(1)本次随机调查的学生人数人,故答案为60;(2)(人),补全条形统计图如图1所示:(3)在扇形统计图中,“B”所在扇形的圆心角,故答案为108;(4)画树状图如图2所示:共有16个等可能的结果,小明和小华恰好选中同一个主题活动的结果有4个,小明和小华恰好选中同一个主题活动的概率.【点睛】本题考查了条形统计图与扇形统计图信息关联,列表法或树状图法求概率,弄清题意,读懂统计图,从中找到必要的信息是解题的关键.25、(2)x2=,x2=;(2)x2=﹣2,x2=2【分析】用求根公式法,先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论