江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题含解析_第1页
江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题含解析_第2页
江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题含解析_第3页
江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题含解析_第4页
江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市东台市第二联盟2025届数学九上期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.关于反比例函数,下列说法正确的是()A.函数图像经过点(2,2); B.函数图像位于第一、三象限;C.当时,函数值随着的增大而增大; D.当时,.2.下面四组线段中不能成比例线段的是()A.、、、 B.、、、 C.、、、 D.、、、3.将抛物线y=(x﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣34.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为(

)A.12π B.24π C.36π D.48π5.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.正三角形 C.平行四边形 D.正方形6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是()A.25° B.30° C.35° D.40°7.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.18.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°9.下列方程中,满足两个实数根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=010.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个11.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是不公平的C.“367人中至少有2人生日相同”是必然事件D.四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是.12.如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,,则小河的宽等于()A. B. C. D.二、填空题(每题4分,共24分)13.如图,圆形纸片⊙O半径为5,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则4个小正方形的面积和为_______.14.若两个相似三角形的面积比是9:25,则对应边上的中线的比为_________.15.从0,1,2,3,4中任取两个不同的数,其乘积为0的概率是___________.16.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.17.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是_____.18.如图,已知AD∥BC,AC和BD相交于点O,若△AOD的面积为2,△BOC的面积为18,BC=6,则AD的长为_____.三、解答题(共78分)19.(8分)综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点是正方形内一点,,,.你能求出的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将绕点逆时针旋转,得到,连接,求出的度数.思路二:将绕点顺时针旋转,得到,连接,求出的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点是正方形外一点,,,,求的度数.拓展应用(3)如图3,在边长为的等边三角形内有一点,,,则的面积是______.20.(8分)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用表示,且抛物线经过点B,C;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?21.(8分)如图,在中,点在边上,.点在边上,.(1)求证:;(2)若,求的长.22.(10分)已知,,,(如图),点,分别为射线上的动点(点C、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.(1)如图1,当时,求AF的长.(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.(3)连接交于点,若是等腰三角形,直接写出的值.23.(10分)如图,,D、E分别是半径OA和OB的中点,求证:CD=CE.24.(10分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)25.(12分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.26.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.

参考答案一、选择题(每题4分,共48分)1、C【解析】直接利用反比例函数的性质分别分析得出答案.【详解】A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;故选C.【点睛】此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.2、B【分析】根据成比例线段的概念,对选项进行一一分析,即可得出答案.【详解】A.2×6=3×4,能成比例;B.4×10≠5×6,不能成比例;C.1×=×,能成比例;D.2×=×,能成比例.故选B.【点睛】本题考查了成比例线段的概念.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段.3、D【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=(x-2)2-8向左平移1个单位所得直线的解析式为:y=(x+1)2-8;

由“上加下减”的原则可知,将抛物线y=(x-5)2-8向上平移5个单位所得抛物线的解析式为:y=(x+1)2-1.

故选:D.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4、B【解析】根据三视图:俯视图是圆,主视图与左视图是长方形可以确定该几何体是圆柱体,再利用已知数据计算圆柱体的体积.【详解】先由三视图确定该几何体是圆柱体,底面直径是4,半径是2,高是1.所以该几何体的体积为π×22×1=24π.故选B.【点睛】本题主要考查由三视图确定几何体和求圆柱体的面积,考查学生的空间想象能力.5、D【分析】在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.【详解】根据定义可得A、B为轴对称图形;C为中心对称图形;D既是轴对称图形,也是中心对称图形.故选:D.考点:轴对称图形与中心对称图形6、B【详解】∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA-∠A′OB′=45°-15°=30°,故选B.7、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.8、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.9、D【分析】利用根与系数的关系判断即可.【详解】满足两个实数根的和等于3的方程是2x2-6x-5=0,故选D.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.11、C【分析】利用随机事件和必然事件的定义对A、C进行判断;利用比较两事件的概率的大小判断游戏的公平性对B进行判断;利用中心对称的性质和概率公式对D进行判断.【详解】A、任意掷一枚质地均匀的硬币10次,可能有5次正面向上,所以A选项错误;B、通过抛掷一枚均匀的硬币确定谁先发球的比赛规则是公平的,所以B选项错误;C、“367人中至少有2人生日相同”是必然事件,所以C选项正确;D、四张分别画有等边三角形、平行四边形、菱形、圆的卡片,从中随机抽取一张,恰好抽到中心对称图形的概率是,所以D选项错误.故选:C.【点睛】本题考查了随机事件以及概率公式和游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.12、C【分析】利用∠ABC的正切函数求解即可.【详解】解:∵AC⊥CD,,,∴小河宽AC=BC·tan∠ABC=100tan50°(m).​故选C.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.二、填空题(每题4分,共24分)13、16【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD为等腰直角三角形,∵⊙O半径为5,根据垂径定理得:∴OD=CD==5,设小正方形的边长为x,则AB=,则在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四个小正方形的面积和=.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.14、3:1【分析】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比是9:21∴两个相似三角形的相似比是3:1∴对应边上的中线的比为3:1故答案为:3:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.15、【分析】首先根据题意画出表格,然后由表格求得所有等可能的结果与其乘积等于0的情况,再利用概率公式即可求得答案;【详解】解:画表格得:共由20种等可能性结果,其中乘积为0有8种,故乘积为0的概率为,故答案为:.【点睛】本题主要考查了列表法与树状图法,掌握列表法与树状图法是解题的关键.16、(6,6).【分析】利用位似变换的概念和相似三角形的性质进行解答即可.【详解】解:∵正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,∴,即解得,OD=6,OF=6,则点E的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了相似三角形、正方形的性质以及位似变换的概念,掌握位似和相似的区别与联系是解答本题的关键.17、16:25【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【详解】解:∵两个相似三角形的相似比为:,∴这两个三角形的面积比;故答案为:∶.【点睛】本题考查了相似三角形性质,解题的关键是熟记相似三角形的性质.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18、1【分析】根据AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面积之比可求出相似比,再根据相似比即可求出AD的长度.【详解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面积为1,△BOC的面积为18,∴△AOD与△BOC的面积之比为1:9,∴,∵BC=6,∴AD=1.故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.三、解答题(共78分)19、(1)∠APB=135°,(2)∠APB=45°;(3).【分析】(1)思路一、先利用旋转求出∠PBP'=90°,BP'=BP=2,AP'=CP=3,利用勾股定理求出PP',进而判断出△APP'是直角三角形,得出∠APP'=90°,即可得出结论;

思路二、同思路一的方法即可得出结论;(2)将绕点逆时针旋转,得到,连接,然后同(1)的思路一的方法即可得出结论;(3)可先将△APB绕点A按逆时针方向旋转60°,得到△AP'C,根据旋转性质,角的计算可得到△APP'是等边三角形,再根据勾股定理,得到AP的长,最后根据三角形面积得到所求.【详解】解:(1)思路一,如图1,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,,∵,∴.又∵,∴,∴是直角三角形,且,∴;思路二、同思路一的方法.(2)如图2,将绕点逆时针旋转,得到,连接,则≌,,,,∴,根据勾股定理得,.∵,∴.又∵,∴,∴是直角三角形,且,∴;(3)如图3,将△APB绕点A按逆时针方向旋转60°,得到△AP'C,

∴∠AP'C=∠APB=360°-90°-120°=150°.∵AP=AP',∴△APP'是等边三角形,∴PP'=AP,∠AP'P=∠APP'=60°,∴∠PP'C=90°,∠P'PC=30°,∴,即.∵APC=90°,∴AP2+PC2=AC2,且,∴PC=2,∴,∴.【点睛】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,旋转的性质,全等三角形的性质,勾股定理及其逆定理,正确作出辅助线是解本题的关键.20、(1),米;(2)米;(3)至少要米.【分析】(1)根据点B、C的坐标,利用待定系数法即可得抛物线的解析式,再求出时y的值即可得OA的高度;(2)将抛物线的解析式化成顶点式,求出y的最大值即可得;(3)求出抛物线与x轴的交点坐标即可得.【详解】(1)由题意,将点代入得:,解得,则抛物线的函数关系式为,当时,,故喷水装置OA的高度米;(2)将化成顶点式为,则当时,y取得最大值,最大值为,故喷出的水流距水面的最大高度是米;(3)当时,,解得或(不符题意,舍去),故水池的半径至少要米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.21、(1)证明见解析;(2).【分析】(1)先通过平角的度数为180°证明,再根据即可证明;(2)根据得出相似比,即可求出的长.【详解】(1)证明:,又(2)【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.22、(1);(2);(3)或或.【分析】过点作于N,利用∠B的余弦值可求出BN的长,利用勾股定理即可求出AN的长,根据线段的和差关系可得CN的长,利用勾股定理可求出AC的长,根据AD//BC,AD=BC即可证明四边形ABCD是平行四边形,可得∠B=∠D,进而可证明△ABC∽△ADF,根据相似三角形的性质即可求出AF的长;(2)根据平行线的性质可得,根据等量代换可得,进而可证明△ABC∽△ABE,根据相似三角形的性质可得,可用x表示出BE、CE的长,根据平行线分线段成比例定理可用x表示出的值,根据可得y与x的关系式,根据x>0,CE>0即可确定x的取值范围;(3)分PA=PD、AP=AD和AD=PD三种情况,根据BE=及线段的和差关系,分别利用勾股定理列方程求出x的值即可得答案.【详解】(1)如图,过点作于N,∵AB=5,,∴在中,=5×=3,∴AN===4,∵BC=x=4,∴CN=BC-BN=4-3=1,在中,,∵AD=4,BC=x=4,∴AD=BC,∵,∴四边形为平行四边形,∴,又∵,∴△ABC∽△ADF,∴,∴解得:,(2)∵,∴,∵,∴,又∵∠B=∠B,∴△ABC∽△ABE,∴,∴,∵AD//BC,∴,∴,∵x>0,CE=>0,∴0<x<5,∴,(3)①如图,当PA=PD时,作AH⊥BM于H,PG⊥AD于G,延长GP交BM于N,∵PA=PD,AD=4,∴AG=DG=2,∠ADB=∠DAE,∵AD//BE,∴GN⊥BE,∠DAE=∠AEB,∠ADB=∠DBE,∴∠DBE=∠AEB,∴PB=PE,∴BN=EN=BE=,∵,AB=5,∴BH=AB·cos∠ABH=3,∵AH⊥BM,GN⊥MB,GN⊥AD,∴∠AHN=∠GNH=∠NGA=90°,∴四边形AHNG是矩形,∴HN=AG=2,∴BN=BH+HN=3+2=5,∴=5,解得:x=.②如图,当AP=AD=4时,作AH⊥BM于H,∴∠ADB=∠APD,∵AD//BM,∴∠ADB=∠DBC,∵∠APD=∠BPE,∴∠DBC=∠BPE,∴BE=PE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∴在Rt△AEH中,(4+)2=42+(3-)2,解得:x=,③如图,当AD=PD=4时,作AH⊥BM于H,DN⊥BM于N,∴∠DAP=∠DPA,∵AD//BM,∴∠DAP=∠AEB,∵∠APD=∠BPE,∴∠BPE=∠AEB,∴BP=BE=,∵cos∠ABC=,AB=5,∴BH=3,AH=4,∵AD//BM,AH⊥BM,DN⊥BM,∴四边形AHND是矩形,∴DN=AH=4,HN=AD=4,中Rt△BND中,(4+)2=42+(4+3)2,解得:x=,综上所述:x的值为或或.【点睛】本题考查相似三角形的综合,熟练掌握锐角三角函数的定义、平行线的性质、等腰三角形的性质及相似三角形的判定与性质,灵活运用分类讨论的思想是解题关键.23、证明见解析.【分析】连接OC,证明三角形△COD和△COE全等;然后利用全等三角形的对应边相等得到CD=CE.【详解】解:连接OC.在⊙O中,∵,∴∠AOC=∠BOC,∵OA=OB,D.E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的对应边相等).【点睛】本题考查圆心角、弧、弦的关系;全等三角形的判定与性质.24、(1)①详见解析;②1;(1)详见解析;(3)BD=.【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA,再利用全等三角形的性质证明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通过计算证明DF=FQ即可解决问题.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,,利用相似三角形的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD是等边三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD•tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如图:∵PA⊥AD,∴∠PAD=90°由题意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论