版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江阴南闸实验学校九上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.2.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.33.关于的一元二次方程有实数根,则满足()A. B.且 C.且 D.4.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.5.把抛物线y=-x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线解析式为()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-16.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是()A. B. C. D.7.下列是世界各国银行的图标,其中不是轴对称图形的是()A. B. C. D.8.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88° B.92° C.106° D.136°9.已知反比例函数的图象经过点(1,2),则k的值为()A.0.5 B.1 C.2 D.410.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A. B. C. D.11.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上 B.对称轴是直线x=lC.顶点坐标为(1,2) D.当x>1时,y随x的增大而减小12.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣5二、填空题(每题4分,共24分)13.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.14.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.15.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.16.计算:sin30°=_____.17.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.18.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.三、解答题(共78分)19.(8分)解方程:(x+2)(x-5)=1.20.(8分)某公司2017年产值2500万元,2019年产值3025万元(1)求2017年至2019年该公司产值的年平均增长率;(2)由(1)所得结果,预计2020年该公司产值将达多少万元?21.(8分)如图,在中,,的平分线交于,为上一点,,以为圆心,以的长为半径画圆.(1)求证:是⊙的切线;(2)求证:.22.(10分)如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.23.(10分)已知:如图,在半径为的中,、是两条直径,为的中点,的延长线交于点,且,连接。.(1)求证:;(2)求的长.24.(10分)如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连结OE,CD=,∠ACB=30°.(1)求证:DE是⊙O的切线;(2)分别求AB,OE的长.25.(12分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.26.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.
参考答案一、选择题(每题4分,共48分)1、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,只有选项B符合条件.故选B.2、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,检验:当x=1时,x2﹣4≠0,所以x=1是原方程的解;当x=-2时,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解为x=1.故选:D.【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.3、C【分析】根据一元二次方程有实数根得到△且,解不等式求出的取值范围即可.【详解】解:关于的一元二次方程有实数根,△且,△且,且.故选:.【点睛】本题考查了一元二次方程的根的判别式△:当△,方程有两个不相等的实数根;当△,方程有两个相等的实数根;当△,方程没有实数根.4、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、B【解析】试题分析:根据抛物线的平移规律“左加右减,上加下减”,可直接求得平移后的抛物线的解析式为:.6、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有27种等可能的结果,构成等腰三角形的有15种情况,
∴以a、b、c为边长正好构成等腰三角形的概率是:.
故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7、D【解析】本题考查的是轴对称图形的定义.把图形沿某条直线折叠直线两旁的部分能够重合的图形叫轴对称图形.A、B、C都可以,而D不行,所以D选项正确.8、D【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数【详解】由圆周角定理可得∠BAD=∠BOD=44°,根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D.考点:圆周角定理;圆内接四边形对角互补.9、C【解析】将(1,1)代入解析式中即可.【详解】解:将点(1,1)代入解析式得,,k=1.故选:C.【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.10、A【分析】根据概率公式计算即可得出答案.【详解】∵“绿水青山就是金山银山”这句话中只有10个字,其中“山”字有三个,∴P(山)=故选:A.【点睛】本题考查了简单事件概率的计算.熟记概率公式是解题的关键.11、D【分析】开口方向由a决定,看a是否大于0,由于抛物线为顶点式,可直接确定对称轴与顶点对照即可,由于抛物线开口向上,在对称轴左侧函数值随x的增大而减小,在对称轴右侧y随x的增大而增大即可.【详解】关于抛物线y=3(x-1)2+2,a=3>0,抛物线开口向上,A正确,x=1是对称轴,B正确,抛物线的顶点坐标是(1,2),C正确,由于抛物线开口向上,x<1,函数值随x的增大而减小,x>1时,y随x的增大而增大,D不正确.故选:D.【点睛】本题考查抛物线的性质问题,由具体抛物线的顶点式抓住有用信息,会用二次项系数确定开口方向与大小,会求对称轴,会写顶点坐标,会利用对称轴把函数的增减性一分为二,还要结合a确定增减问题.12、B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
∴-2+m=−,
解得,m=-1,
故选B.二、填空题(每题4分,共24分)13、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.14、3:2【解析】因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为:3:2.15、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.16、1【解析】根据sin30°=12【详解】sin30°=12【点睛】本题考查的知识点是特殊角的三角函数值,解题的关键是熟练的掌握特殊角的三角函数值.17、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.18、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.三、解答题(共78分)19、x1=7,x2=-2【解析】化为一般形式,利用因式分解法求得方程的解即可.【详解】解:(x+2)(x-5)=1,x2-3x-28=0,(x-7)(x+2)=0∴x-7=0,x+2=0解得:x1=7,x2=-2.【点睛】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.20、(1)这两年产值的平均增长率为;(2)预计2020年该公产值将达到3327.5万元.【分析】(1)先设出增长率,再根据2019年的产值列出方程,解方程即可得出答案;(2)根据(1)中求出的增长率乘以2019年的产值,再加上2019年的产值,即可得出答案.【详解】解:设增长率为,则2018年万元,2019年万元.则,解得,或(不合题意舍去).答:这两年产值的平均增长率为.(2)(万元).故由(1)所得结果,预计2020年该公产值将达到3327.5万元.【点睛】本题考查的是一元二次方程的应用——增长率问题,解题关键是根据题意列出方程.21、(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)先证明△BDE≌△FCD(HL),根据全等三角形对应边相等及切线的性质的AB=AF,得出AB+EB=AC.【详解】证明:(1)过点作于;∵,以为圆心,以的长为半径画圆,∴AB为圆D的切线又∵,且AD平分∠BAC,且DF⊥AC,是⊙的切线.(2)由,DB是半径得AB的是⊙O的切线,又由(1)可知是⊙的切线∵,∴即.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;及全等三角形的判断,全等三角形的对应边相等.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)连接CD,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC,根据直径的性质得出∠ABC=90°,根据B是EF的中点得出AB=EF,即∠BAC=∠AFE,则得出三角形相似;(3)根据三角形相似得出,根据AF和CF的长度得出AC的长度,然后根据EF=2AB代入求出AB和EF的长度,最后根据Rt△AEF的勾股定理求出AE的长度.【详解】解:(1)如答图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠BAC=∠EAB+∠BAC=90°∴EA是⊙O的切线;(2)如答图2,连接BC,∵AC是⊙O的直径,∴∠ABC=90°.∴∠CBA=∠ABC=90°∵B是EF的中点,∴在Rt△EAF中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴∵AF=4,CF=2,∴AC=6,EF=2AB.∴,解得AB=2∴EF=4∴AE=.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.23、(1)证明见解析;(1)EM=4.【解析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(1)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度.【详解】(1)连接AC、EB.∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(1)∵DC是⊙O的直径,∴∠DEC=90°,∴DE1+EC1=DC1.∵DE,CD=8,且EC为正数,∴EC=2.∵M为OB的中点,∴BM=1,AM=3.∵AM•BM=EM•CM=EM•(EC﹣EM)=EM•(2﹣EM)=11,且EM>MC,∴EM=4.【点睛】本题考查了相似三角形的判定和性质、圆周角定理、勾股定理的知识点,解答本题的关键是根据已知条件和图形作辅助线.24、(1)证明见解析;(2)AB=2,OE=.【分析】(1)根据AB是直径即可求得∠ADB=90°,再根据题意可求出OD⊥DE,即得出结论;(2)根据三角函数的定义,即可求得BC,进而得到AB,再在Rt△CDE中,根据直角三角形的性质,可求得DE,再由勾股定理求出OE即可.【详解】(1)连接BD,OD.∵AB是直径,∴∠AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市公共场所安全联防联控工作方案
- 重症医学科家属沟通制度
- 二手房装修合同特别约定
- 水下施工环境保护方案
- 污水处理厂混凝土重力坝方案
- 医学影像带教工作总结
- 乡村振兴关爱青少年活动方案
- 乡镇卫生院护理技术及服务工作总结
- 维修工程实施方案
- 师范专业实习报告范文
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)化学试卷(含标准答案)
- 北京联合大学《影视作品欣赏》2023-2024学年第一学期期末试卷
- 《心理健康教育主题班会》主题
- 8 冀中的地道战(教学设计)2023-2024学年统编版语文五年级上册
- 疲劳试验机市场需求与消费特点分析
- 2024中国石化校园招聘3500人高频500题难、易错点模拟试题附带答案详解
- 2024年人教版七年级上册英语期中综合检测试卷及答案 (一)
- 组织管理体系-
- 山西省太原市2022-2023学年八年级上学期期中历史试题(解析版)
- 园艺用品采购合同范本
- 路基土石方数量计算表
评论
0/150
提交评论