版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市星火教育2025届九年级数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若函数y=(3﹣m)﹣x+1是二次函数,则m的值为()A.3 B.﹣3 C.±3 D.92.下列各式运算正确的是()A. B. C. D.3.抛物线y=2x2+3与两坐标轴的公共点个数为()A.0个 B.1个 C.2个 D.3个4.如图,空心圆柱的俯视图是()A. B. C. D.5.下列数学符号中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.要使式子有意义,则x的值可以是()A.2 B.0 C.1 D.97.方程的根是()A.5和 B.2和 C.8和 D.3和8.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A. B.2 C.5 D.109.计算=()A. B. C. D.10.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ab<0 B.a+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>011.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A. B.C. D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.平行四边形 C.正五边形 D.圆二、填空题(每题4分,共24分)13.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.14.二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是_____.15.设、是关于的方程的两个根,则__________.16.如图,AB是⊙C的直径,点C、D在⊙C上,若∠ACD=33°,则∠BOD=_____.17.如图,在中,、分别是边、上的点,且∥,若与的周长之比为,,则_____.18.如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若△PAB与△PCD是相似三角形,则BP的长为_____________三、解答题(共78分)19.(8分)阅读下列材料后,用此方法解决问题.解方程:.解:∵时,左边右边.∴是方程的一个解.可设则:∴∴∴又∵可分解为∴方程的解满足或或.∴或或.(1)解方程;(2)若和是关于的方程的两个解,求第三个解和,的值.20.(8分)解方程:(1)3x1-6x-1=0;(1)(x-1)1=(1x+1)1.21.(8分)如图,已知抛物线与轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,直线经过点C,与轴交于点D.(1)求该抛物线的函数关系式;(2)点P是(1)中的抛物线上的一个动点,设点P的横坐标为t(0<t<3).①求△PCD的面积的最大值;②是否存在点P,使得△PCD是以CD为直角边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由.22.(10分)在平面直角坐标系中,已知抛物线.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与轴相交于、两点(在左侧),与轴相交于点,连接.若点是直线上方抛物线上的一点,求的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点,使是以为直角边的直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,说明理由.23.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.24.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交线段CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,请直接写出存在个满足题意的点.25.(12分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.26.计算:
参考答案一、选择题(每题4分,共48分)1、B【分析】根据二次函数的定义来求解,注意二次项的系数与次数.【详解】根据二次函数的定义,可知
m2-7=2
,且
3-m≠0
,解得
m=-3
,所以选择B.故答案为B【点睛】本题考查了二次函数的定义,注意二次项的系数不能为0.2、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.3、B【分析】根据一元二次方程2x2+3=1的根的判别式的符号来判定抛物线y=2x2+3与x轴的交点个数,当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点.【详解】解:当y=1时,2x2+3=1.
∵△=12-4×2×3=-24<1,
∴一元二次方程2x2+3=1没有实数根,即抛物线y=2x2+3与x轴没有交点;
当x=1时,y=3,即抛物线y=2x2+3与y轴有一个交点,
∴抛物线y=2x2+3与两坐标轴的交点个数为1个.
故选B.【点睛】本题考查了抛物线与x轴、y轴的交点.注意,本题求得是“抛物线y=2x2+3与两坐标轴的交点个数”,而非“抛物线y=2x2+3与x轴交点的个数”.4、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是三个水平边较短的矩形,中间矩形的左右两边是虚线,故选:D.【点睛】本题考查了三视图,俯视图是指从上往下看得到的图形。注意:看的见的线画实线,看不见的线画虚线.5、D【分析】根据轴对称图形与中心对称图形的定义即可判断.【详解】A既不是轴对称图形也不是中心对称图形;B是中心对称图形,但不是轴对称图形;C是轴对称图形,但不是中心对称图形;D既是轴对称图形,又是中心对称图形,故选D.【点睛】此题主要考察轴对称图形与中心对称图形的定义,熟知其定义是解题的关键.6、D【解析】式子为二次根式,根据二次根式的性质,被开方数大于等于0,可得x-50,解不等式就可得到答案.【详解】∵式子有意义,∴x-50,∴x5,观察个选项,可以发现x的值可以是9.故选D.【点睛】本题考查二次根式有意义的条件.7、C【分析】利用直接开平方法解方程即可得答案.【详解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故选:C.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.8、C【解析】分析:根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故选C.点睛:本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.9、C【解析】分析:分子根据合并同类项计算,分母根据同底数幂的乘法计算.详解:原式=.故选C.点睛:本题考查了合并同类项和同底数幂的乘法计算,合并同类项的方法是系数相加,字母和字母的指数不变;同底数的幂相乘,底数不变,把指数相加.10、D【解析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在y轴的左侧得到b>0,则可对A选项进行判断;利用x=1时,y=2得到a+b=2﹣c,则a+b+2c﹣2=c<0,于是可对B选项进行判断;利用抛物线与x轴有2个交点可对C选项进行判断;利用﹣1<﹣<0可对D选项进行判断.【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,即b>0,∴ab>0,故A选项错误;∵抛物线与y轴的交点在x轴下方,∴c<0,∵x=1时,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B选项错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,故C选项错误;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D选项正确.故选:D.【点睛】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.11、B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.12、D【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故A错误;B、平行四边形不是轴对称图形,是中心对称图形,故B错误;C、正五边形是轴对称图形,不是中心对称图形,故C错误;D、圆是轴对称图形,也是中心对称图形,故D正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.二、填空题(每题4分,共24分)13、40cm【解析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故答案为:40cm.【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.14、0,2【分析】将点A,B代入二次函数解析式,求得的值,再代入,解出答案.【详解】∵经过点A(-1,0),B(3,0)∴,解得∴即为解得:或故答案为:或.【点睛】熟练掌握待定系数法求二次函数解析式,及提取公因式法解一元二次方程是解题的关键.15、1【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3,=-5∴-3-(-5)=1故答案为1.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠0),则有:,是解答本题的关键.16、114°.【分析】利用圆周角定理求出∠AOD即可解决问题.【详解】∵∠AOD=2∠ACD,∠ACD=33°,∴∠AOD=66°,∴∠BOD=180°﹣66°=114°,故答案为114°.【点睛】本题考查圆周角定理,解题的关键是掌握圆周角定理.17、2.【解析】试题分析:因为DE∥BC,所以△ADE∽△ABC,因为相似三角形的周长之比等于相似比,所以AD:AB=2:3,因为AD=4,所以AB=6,所以DB=AB-AD=6-4=2.故答案为2.考点:相似三角形的判定与性质.18、1或2【分析】设BP=x,则CP=BC-BP=3-x,易证∠B=∠C=90°,根据相似三角形的对应顶点分类讨论:①若△PAB∽△PDC时,列出比例式即可求出BP;②若△PAB∽△DPC时,原理同上.【详解】解:设BP=x,则CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC时∴即解得:x=1即此时BP=1;②若△PAB∽△DPC时∴即解得:即此时BP=1或2;综上所述:BP=1或2.故答案为:1或2.【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解决此题的关键.三、解答题(共78分)19、(1)或或;(2)第三个解为,,.【分析】(1)模仿材料可得:是的一个解.可设,=,求出m,n再因式分解求解;(2)由和是方程的两个解,可设,则:=,求出k,再因式分解解方程.【详解】解:(1)∵时,左边==0=右边,∴是的一个解.可设∴=∴∴∴=∴或或.∴方程的解为或或.(2)∵和是方程的两个解∴可设,则:==∴∴∴=0∴或或.∴方程的解为或或.∴第三个解为,,.【点睛】考核知识点:因式分解高次方程.理解材料,熟练掌握整式乘法和因式分解方法是关键.20、(1)x1=1+,x1=1-;(1)x1=,x1=-3【分析】(1)利用配方法解方程即可;
(1)先移项,然后利用因式分解法解方程.【详解】(1)解:x1-1x=x1-1x+1=+1(x-1)1=x-1=±∴x1=1+,x1=1-(1)解:[(x-1)+(1x+1)][(x-1)-(1x+1)]=0(3x-1)(-x-3)=0∴x1=,x1=-3【点睛】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.21、(1);(2)①3;②或【分析】(1)根据直线解析式求出点C坐标,再用待定系数法求出抛物线的解析式;(2)①过点P作轴于点F,交DC于点E,用t表示出点P和点E的坐标,的面积用表示,求出最大值;②分两种情况进行讨论,或,都是去构造相似三角形,利用对应边成比例列式求出t的值,得到点P的坐标.【详解】解:(1)令,则,求出,将A、B、C的坐标代入抛物线解析式,得,解得,∴;(2)①如图,过点P作轴于点F,交DC于点E,设点P的坐标是,则点E的纵坐标为,将代入直线解析式,得,∴点E坐标是,∴,∴,∴面积的最大值是3;②是以CD为直角边的直角三角形分两种情况,第一种,,如图,过点P作轴于点G,则,∴,即,整理得,解得,(舍去),∴;第二种,,如图,过点P作轴于点H,则,∴,即,整理得,解得,(舍去),∴,综上,点P的坐标是或.【点睛】本题考查二次函数的综合,解题的关键是掌握待定系数法求解析式的方法,三角形面积的表示方法以及构造相似三角形利用数形结合的思想求点坐标的方法.22、(1)抛物线的方点坐标是,;(2)当时,的面积最大,最大值为;(3)存在,或【分析】(1)由定义得出x=y,直接代入求解即可(2)作辅助线PD平行于y轴,先求出抛物线与直线的解析式,设出点P的坐标,利用点坐标求出PD的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B,C的坐标,得出△OBC为等腰直角三角形,过点C作交x轴于点M,作交y轴于点N,得出M,N的坐标,得出直线BN、MC的解析式然后解方程组即可.【详解】解:(1)由题意得:∴解得,∴抛物线的方点坐标是,.(2)过点作轴的平行线交于点.易得平移后抛物线的表达式为,直线的解析式为.设,则.∴∴∴当时,的面积最大,最大值为.(3)如图所示,过点C作交x轴于点M,作交y轴于点N由已知条件得出点B的坐标为B(3,0),C的坐标为C(0,3),∴△COB是等腰直角三角形,∴可得出M、N的坐标分别为:M(-3,0),N(0,-3)直线CM的解析式为:y=x+3直线BN的解析式为:y=x-3由此可得出:或解方程组得出:或∴或【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式.23、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.24、(1)(2)当时,的长最大(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业技术培训驾驭科技浪潮考核试卷
- 企业教育培训的人力资源管理考核试卷
- 信息系统人力资源与智能招聘考核试卷
- 建筑物拆除前的环境影响评价考核试卷
- 搪瓷制品在化妆品包装中的创新应用考核试卷
- 建筑物拆除施工现场的材料质量检验与工艺控制方法考核试卷
- 内陆养殖的农村富民与农产品流通考核试卷
- 脱贫攻坚财政支出项目绩效评价报告
- 新员工安全隐患知识培训目标
- 新员工入行培训财务合规
- 初中英语教学活动设计
- 三写作的载体与受体
- 概率论与数理统计(第五版)习题答案
- GB/T 451.3-2002纸和纸板厚度的测定
- 网签授权书(学生就业平台)
- GB/T 17853-2018不锈钢药芯焊丝
- MORA-Super摩拉生物物理治疗仪
- 脚手架拆除监理旁站记录
- ml360连续采煤机安标受控件明细表
- 西安电子科技大学2020春 机械制图(大作业)答案
- 大学生心理健康优秀说课-比赛课件
评论
0/150
提交评论